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Abstract
Echo-state networks are simple models of discrete dynamical systems driven by a time series. By
selecting network parameters such that the dynamics of the network is contractive, characterized
by a negative maximal Lyapunov exponent, the network may synchronize with the driving signal.
Exploiting this synchronization, the echo-state network may be trained to autonomously
reproduce the input dynamics, enabling time-series prediction. However, while synchronization is
a necessary condition for prediction, it is not sufficient. Here, we study what other conditions are
necessary for successful time-series prediction. We identify two key parameters for prediction
performance, and conduct a parameter sweep to find regions where prediction is successful. These
regions differ significantly depending on whether full or partial phase space information about the
input is provided to the network during training. We explain how these regions emerge.

1. Introduction

Many driven dynamical systems can be found in nature and engineering. Reservoir computing has recently
become popular to study in this context, as it yields simple models of such dynamical systems. By exploiting
signal-driven synchronization, where the dynamics of the reservoir neurons synchronizes with the input time
series, a reservoir computer can be trained to reproduce a time series autonomously [1–4]. A necessary
condition for the synchronization to occur is that the dynamics of the reservoir neurons is contractive; a
property ensured by the reservoir dynamics having a negative maximal Lyapunov exponent. In reservoir
computing literature, the ability to synchronize is referred to as the echo-state property, a term coined by
Jaeger in his original paper on echo-state networks (ESNs) [5], which is the most common realisation of
reservoir networks. The maximal Lyapunov exponent has been the focus of study in several papers due to its
close connection to the echo-state property [6–8]. There is some variation in how the maximal Lyapunov
exponent has been defined. In [6], the Lyapunov exponent is defined in the absence of input. However, as the
input has been shown to have a contractive effect on the reservoir dynamics when using the commonly
employed tanh activation function [7], the maximal Lyapunov exponent defined in the presence of input is
more naturally connected to the echo-state property.

While the echo-state property is a necessary condition for the reproduction of a time series, it is not
sufficient. The ability for a reservoir network to reproduce a time series has recently been formally connected
to time-delay embedding [9]. The result states that the embedding is possible because the dependence on
previous inputs decays at different rates for different neurons in the reservoir, creating an internal
representation that captures different time scales of the input time series. The rate at which dependence on
previous inputs of a given neuron decays is controlled by the strength of the input and recurrent
connections, as these control the strength of the driving and the time scale of the recurrent dynamics of that
neuron. In fact, using time delay embedding, it is possible to reproduce a time series with only partial phase
space information. By partial phase space information is meant that only a subset of the components of the
time series is used when making the prediction of the time series. The connection between the ability to
represent several time scales and prediction performance was first observed in [5, 10] and has inspired the
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design heuristic that the reservoir dynamics should be ‘rich’ in the sense that the different neurons should
display a wide range of dynamics that captures different time scales of the time series. However, other results
show that the reservoir connections, which allow the reservoir to represent temporal information, can be
removed while still maintaining good prediction performance [11, 12]. In this case, time delay embedding is
not possible. It is clear that such networks cannot reproduce dynamics with only partial phase space
information. The distinction between full and partial-information tasks in reservoir computing was made in
[13], labelled as non-temporal and temporal tasks respectively, but distinctions between how the reservoir
should be designed in the two cases were not discussed.

In this paper, we investigate the differences in parameter dependence when full or partial phase space
information is provided to an ESN. We begin by showing that, in the limit of large network dimension, and
for a given input time series, the maximal Lyapunov exponent depends only on two parameters that combine
several tuning parameters, namely the reservoir dimension, the scale of the reservoir connections (here
quantified as the variance of the connection weights), the sparsity of the reservoir connectivity matrix, and
the dimension and scale of the input. Sweeping the two parameters identified, we study the difference
between the regions where reservoir computing is successful for the cases of full and partial information, and
explain the shape of these regions. This includes showing why the maximal Lyapunov exponent has a lower
boundary in the case of partial information, and how the commonly employed ridge parameter introduces a
lower boundary of the input scale for successful reservoir computing. A condition for successful prediction
in the partial-information case is shown to imply that the commonly employed metric for linear
information,memory capacity [5], must be low, implying that maximizing this metric is counterproductive
when optimizing performance. Additionally, we show that results concerning the sampling rate in time-delay
embedding theory [14] can be applied to the case of partial information to improve performance.

The paper is structured as follows: First, we provide some background on the theory of ESNs and how
their predictive performance is evaluated. In the following section, we derive a mean-field expression for the
maximal Lyapunov exponent using random-matrix theory, arriving at the same result as in [7], but
extending it to more general input time series rather than Gaussian noise. This is followed by a section where
we describe the methods we use. We then present the results for the case of full and partial phase space
information. We conclude with a discussion of the results.

2. Background

2.1. Echo-state networks
The ESN training dynamics for a reservoir with N neurons and an input signal with n components are given
by [15]

ri(t+ 1) = g

 N∑
j=1

Aijrj(t)+
n∑

α=1

W(in)
iα uα(t)

 , (1a)

vi(t+ 1) =
N∑
j=1

W(out)
ij f

(
rj(t+ 1)

)
. (1b)

Here ri(t) is the state of the i:th reservoir neuron at time t, and uα(t) is the α:th component of the input
signal. The matrix A is the reservoir connection matrix whose entries Aij represent the connection strength
between the reservoir nodes, whileW(in) are the connections between the input and the reservoir. g(·) is the
activation function, and f(·) is applied to the reservoir states before it is projected to the output space with
the output weight matrixW(out). The argument of the activation function is referred to as the local field. f(·)
is often set to be the identity function. In this work, to break the inherent symmetry of the reservoir
dynamics which causes the ESN to learn the reflected input series u→−u as well as the original, we employ
the Lu readout [3].

During prediction, we follow the standard procedure introduced in [5] and replace the input uα(t) by the
output vα(t) of the reservoir to form an autonomous system,

ri(t+ 1) = g

 N∑
j=1

Aijrj(t)+
n∑

α=1

W(in)
iα vα(t)

 , (2a)
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vi(t+ 1) =
N∑
j=1

W(out)
ij f

(
rj(t+ 1)

)
. (2b)

This is the prediction dynamics.

2.2. Training and evaluation
In order to train the ESN, the training dynamics (1) is run for some time using the input time series to
ensure that the reservoir dynamics has synchronized with the input. Then, at time t= 0, an 2N×Tmax matrix
R is formed where each column is the reservoir state vectors r(t) and r2(t) concatenated (due to the Lu
readout) at each time t= 0, 1, . . . ,Tmax − 1. We wish to minimize the quadratic error between the output
v(t) and the target y(t) = u(t) and achieve this by employing ridge regression [16] to obtain

W(out) = YR⊤(RR⊤ + kI)−1. (3)

Here, Y is a matrix whose columns are given by y(t), and k≥ 0 is the ridge parameter which is introduced
to reduce overfitting. An additional effect of the ridge parameter is that the magnitude of the entries in
W(out) decreases as k increases.

OnceW(out) has been determined, the prediction dynamics (2) is used to autonomously predict how the
time series continues. We now define an error function which will be used to measure the prediction
performance of the trained network. In order to evaluate the prediction performance of the ESN, we monitor

εα(t) =

√
(yα(t)− vα(t))

2

σ2
yα

, (4)

where σ2
yα is the variance of the α:th component of the time series. The quantity εα(t) quantifies how many

standard deviations the α:th component of the prediction deviates from the target time series. When any of
the predicted components deviates more than some threshold value, the time is recorded as the successful
prediction time. We set the threshold value to 0.5. Decreasing this value does not qualitatively affect the
obtained results. As this quantity fluctuates depending on the random initialisation of the ESN and from
where in the time series the prediction started, the final performance score is determined by an average over
several random initialisations of both the ESN and initial value of the time series. As the quantity is
standardized, the metric is comparable for different time series.

2.3. Parameters
In designing an ESN, several parameters must be selected. As they are central to this work, we summarise the
relevant parameters here. The parameters that are mainly discussed in literature are the reservoir dimension
N, the scale of the reservoir connectivity matrix σ2

A, which is the variance of the entries in A (the spectral
radius is sometimes used instead as a scale metric), the sparsity of the connections in the reservoir s, which
takes the value s= 1 if all neurons are connected and s= 0 if no neurons are connected, the input dimension
n, and the scale of the input σ2

in, which is the variance of the entries ofW(in). These are parameters pertaining
to the architecture of the ESN. In addition, the ridge parameter k used during training and the sampling rate
δt of the time series are important tuning parameters. In this work, we assume that N is sufficiently large so
that the sum over reservoir states in (1a) and (2a) can be approximated as a random variable with a
Gaussian distribution with mean zero (due to the distribution of the reservoir connections Aij) and variance
sNσ2

A. In this limit, it is unnecessary to vary s, N, and σ2
A independently when selecting reservoir parameters,

which is often done in literature, see for example [5, 13]. For a given input series, the reservoir dynamics thus
only depends on two parameters, namely sNσ2

A and nσ2
in. In the remainder of the article, these two

parameters are used to investigate parameter regions where reservoir computing is successful.

3. Maximal Lyapunov exponent

The maximal Lyapunov exponent of a dynamical system describes the long term fate of the separation of two
initially nearby trajectories [17]. The quantity is computed under the assumption that the separation
remains small within the time frame of interest, and as such, we can consider the linearised dynamics of the
system to describe the evolution of the separation. For ESNs, it is possible to define three different Lyapunov
exponents by considering different dynamical systems: (i) system (1a) with σ2

in = 0, (ii) system (1a with
σ2
in > 0, and (iii) system (2) for a trained ESN. In [6], definition (i) was employed. However, definition

(ii) must be used if one wants to quantify the echo-state property, because the input has a contracting effect

3
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on the reservoir dynamics when the tanh activation function is employed [7]. It is therefore more natural to
study the latter definition. Finally, if an ESN has been trained successfully, the third definition of the
exponent approximate the maximal Lyapunov exponent of the input dynamics, as shown in [1]. We mainly
focus on definition (ii) and refer to this as the training Lyapunov exponent λT .

For an ESN employing the tanh activation function, we may compute the linearised separation of
reservoir states δr(t) in the presence of input as

δr(t+ 1) =D(t)Aδr(t), (5)

where D(t) is a diagonal matrix with entries Dii(t) = 1− tanh2 (bi(t)), where bi(t) =
∑N

j Aijrj(t)+∑n
αW

(in)
iα uα(t). The training Lyapunov exponent is obtained by computing [17]

λT = lim
t→∞

1

t
log

|D(t− 1)AD(t− 2)A . . .D(0)Aδr(0)|
|δr(0)|

. (6)

Numerically, the product in (6) can be computed employing the QR method [18] and computing the
average maximal expansion of δr(t) per time step until the average has converged to some fixed value.

The training Lyapunov exponent has previously been derived in the limit of large N using mean-field
theory [7]. It was assumed that the reservoir dimension N is sufficiently large so that the sum

∑N
j=1Aijrj(t) is

distributed according to a normal distribution due to the central limit theorem. We employ the same
assumption and derive a similar result for the training Lyapunov exponent using random matrix theory. We
do not assume that the input is Gaussian random noise, but that it is a general, stationary time series with a
rapid decay of time correlations. We therefore do not require an i.i.d. input series. Using these assumptions,
we obtain an expression for the training Lyapunov exponent (see appendix):

λT =
1

2

[
ln
(
sNσ2

A

)
+ ln

(
N−1

N∑
i

⟨D2
ii(t)⟩

)]
. (7)

Here, ⟨·⟩ is the average taken over input samples and ensembles of A andW(in). This is the same result as
[7], for relaxed assumptions on the input time series. To obtain ⟨D2

ii⟩, we use the same procedure as [7] and
construct an iterative map for the variance of the reservoir states ri(t). Assuming that N is large enough so
that the sum

∑N
j=1Aijrj is normally distributed, we can compute the probability density function fb(x) of the

local field by using the convolution of the probability mass function of a normal distribution with zero mean
and variance sNσ2

Aσ
2
r , and the empirical probability mass function of the normalized input time series, given

an ensemble of input trajectories initialized with random initial values, scaled by σ2
in, to construct an iterative

map of the variance of ri(t) taken over input samples and ensembles of A andW(in),

σ2
r (t+ 1) =

ˆ ∞

−∞
db (g(b))2 fb(b; sNσ

2
A,σ

2
r (t),σ

2
in). (8)

In [7], it was shown that this map converges to a fixed point when the input is a Gaussian random
variable. A similar result was derived by Poole et al [19] for feed-forward neural networks, where the map
was also shown to rapidly converge. Our numerical results show that σ2

r (t) converges for non-Gaussian
inputs. Assuming t is large enough for the map to have converged, and denoting the converged variance by
(σ∗

r )
2, one finds

⟨D2
ii⟩= ⟨(1− r2i (t))

2⟩= 1− 2(σ∗
r )

2 + ⟨r4i ⟩, (9)

where the fourth moment of ri(t), which also converges as the distribution only depends the first and second
moments, can be computed as

⟨r4i ⟩=
ˆ ∞

−∞
db (g(b))4 fb(b; sNσ

2
A,(σ

∗
r )

2,σ2
in). (10)

Combining (7) and (9), we find that the predicted training Lyapunov exponent agrees very well with the
result obtained using the QR method when the reservoir dimension N is large. The result shows that λT , for
a given input time series, depends on sNσ2

A and nσ2
in. This agrees with the discussion in section 2.3.

4



Mach. Learn.: Sci. Technol. 3 (2022) 045021 L Storm et al

4. Method

To evaluate the prediction performance of ESNs when full and partial information is provided, we use the
ESN to predict a chaotic time series where we either input the ESN with the time series of all the components
of the time series, or only a single component. In the latter case, we use the ESN to predict the input
component. As the ESN has incomplete information for this case, it must construct a time-delay embedding
to reproduce the dynamics correctly. As examples of chaotic time series, we use the Lorenz63 system [20],
given by

d

dt
x= σ(y− x), (11a)

d

dt
y= ρx− y− xz, (11b)

d

dt
z= xy−βz, (11c)

with σ= 10, ρ= 28, and β = 8/3, which results in that the dynamical system has a Lyapunov spectrum of
λ1 = 0.901, λ2 = 0, and λ3 =−14.6 [21], and the Halvorsen system [21]

d

dt
x=−ax− 4(y+ z)− y2 (12a)

d

dt
y=−ay− 4(x+ z)− z2 (12b)

d

dt
z=−az− 4(x+ y)− x2, (12c)

with a= 1.3. The Lyapunov spectrum of the Halvorsen system is λ1 = 0.69, λ2 = 0, and λ3 =−4.9 when the
considered parameters are used [21].

We obtain a time series by discretizing the dynamical systems (11) and (12) with a sampling rate δt= 0.1.
This choice is informed by the work of Kantz and Schreiber (see p 151 in [14]) where the information
theoretical concept of mutual information is used to find an optimal step size for time delay embedding of
the Lorenz63 system. We use the same sampling rate for the Halvorsen time series. The effect of changing the
sampling rate is investigated in section 5.2. The ESN is trained on the Lorenz63 or Halvorsen system for
roughly 200 Lyapunov times, where one Lyapunov time is defined as λ−1

1 and λ1 is the maximal Lyapunov
exponent of the dynamical system. Before feeding the time series to the reservoir, the time series is
normalized such that the largest variance of any variable of the dynamical system over time equals unity. This
is to ensure that the dependence on nσ2

in is comparable for the different time series.

5. Results and discussion

5.1. Parameter dependence for full and partial information
We characterize the prediction performance in a phase diagram with axes sNσ2

A and nσ2
in (see figure 1), for

two cases: (i) Providing full phase space information to the reservoir (panels (a) and (c) in figure 1) and
(ii) providing only partial phase space information to the reservoir (panels (b) and (d) in figure 1). Different
aspects of the phase diagram in figure 1 are discussed below.

5.1.1. Maximal Lyapunov exponent
We first observe that the reservoir dynamics must contract (λT < 0) for successful prediction. This is
demonstrated by the red line in the phase diagrams. In [22], the transition between the successful and failed
prediction is shown to be smooth. However, we find that the transition becomes sharper as N increases. We
also note that the maximal Lyapunov exponent computed in the absence of input (dashed black line in
figure 1), used in [6], works well as long as nσ2

in is small. As nσ2
in becomes larger, the input variance has an

increasingly contractive effect on λT . It is clear from figure 1 that λT < 0 is a necessary but not sufficient
condition for successful prediction.

5
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Figure 1. Prediction performance, measured as the average Lyapunov time before the prediction fails (εα(t)> 0.5 for any α, see
section 2.2)., of an ESN of dimension N= 500, trained on (a) the Lorenz63 system provided with all three components, (b) the
Lorenz63 system provided with only the y-component, (c) the Halvorsen system provided with three components, and (d) the
Halvorsen system provided with only the y-component. Each result has been averaged over 50 independent trials. The red line
shows where the mean field theory predicts λT = 0, while the green line shows where rank(RR⊤) = 100. The latter choice is
discussed in section 5.1.3. The dashed line shows where the maximal Lyapunov exponent in the absence of input is zero, and the
blue line shows where the prediction dynamics (2) bifurcates from a stable fixed point when the ridge parameter k= 10−2, which
was used during training. The results were averaged over 50 independent trials.

5.1.2. Full and partial information
A qualitative difference exists in the parameter dependence on prediction performance when full or partial
information is provided to the network. In the full information case, as long as λT < 0, the performance is
roughly independent of sNσ2

A. This is consistent with the result of [11, 12], where it was shown that the
connections between the reservoir neurons can be removed (setting A to zero) and still the reservoir allows
successful prediction. Removing the connections renders the ESN memory-less, and the algorithm simply
projects the input series nonlinearly to a high dimensional space and performs a function fitting. This is
possible because full phase space information is provided; only the current phase space coordinate is
necessary to determine the evolution of the dynamics. This is not the case for partial information. In [9], it
was shown that the reservoir computer employs time delay embedding to predict a time series. It is possible,
according to Takens’ embedding theorem, to embed a high dimensional time series using the history of a
single observable. The theorem states that, given at least 2df + 1 delays, where df is the box-counting
dimension of the attractor of the time series, the embedding is possible. In our case, this corresponds to
having at least 2df + 1 neurons representing different time scales of the input time series. The box-counting
dimension of the Lorenz63 system is 2.06 [21], implying that approximately five neurons are required.
However, as was pointed out in [9], while the embedding is possible, projecting the embedding back to the
original space linearly (2b) is not necessarily accurate. To resolve this, the universal approximation theorem
was evoked in [9], stating that with a sufficiently large sum of weighted nonlinear activation functions, any
functional relationship can be approximated. Hence, we need sufficiently many neurons representing
different time scales of the input time series to be able to predict the time series when only partial
information is provided. The different time scales are sampled by choosing reservoir and input weights such
that the dependence on previous inputs decays at different rates for different neurons.

5.1.3. Rank of RR⊤

In panels (b) and (d) in figure 1, the ESN must use time-delay embedding to reconstruct the input dynamics.
When sNσ2

Aσ
2
r ≪ nσ2

in, all reservoir states are highly correlated because they are all strongly driven by the
input signal. As sNσ2

Aσ
2
r ∼ nσ2

in, the reservoir states may develop different dynamics due to the randomly
sampled connections in A. This can be quantified using the rank of the matrix RR⊤, i.e. the number of
linearly independent (over time) reservoir neurons. We remind the reader that R is the matrix whose
columns are the reservoir states r(t) throughout the training sequence (see section 2.2). The rank of RR⊤

6
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Figure 2. (a) Performance of an ESN with dimension N= 500 predicting the y-component of the Lorenz63 attractor (same data
as in figures 1(a) and (b) rank of the RR⊤ matrix computed for the same reservoir computer, and (c) the memory capacity,
computed for the same reservoir dimension. The result has been averaged over 100 independent trials.

quantifies the ‘richness’ described by Jaeger in his original paper on ESNs. This is the effective number of
activation functions that the ESN can use to approximate the functional relationship between the reservoir
embedding and the original space. In figure 1, the green line shows where the rank is equal to 100. Along this
contour, the ESN can effectively employ 100 reservoir states to approximate the functional relationship
between the time-delay embedding performed by the reservoir and the output. Above the green line, the rank
increases gradually, making the approximation more accurate. As shown in figure 1, it is only once the rank
begins to increase that the reservoir is able to predict. The gradual increase of rank is reflected in a gradual
increase of performance. In panels (a) and (c), the rank of RR⊤ does not affect performance, because the
ESN does not need to perform a time-delay embedding to reconstruct the input dynamics.

That predictive performance depends on the rank of RR⊤ has several consequences. Firstly, the lower
bound depends on the effective number of reservoir states required to approximate the relation between the
reservoir embedding and the original space, and is independent of any time scale of the predicted time series.
Thus, it is incorrect to state that the scale of A (often the spectral radius is used) must be adjusted in
accordance with the time scale of the predicted time series [5]. In fact, as long as sufficiently many neurons
are uncorrelated and each neuron is an echo of the input, prediction is possible. Secondly, the result has
consequences for the linear memory capacity of a reservoir [5]. The memory capacityMC measures the
maximal achievable linear correlation between current reservoir states and previous inputs and is defined as

MC=
∞∑
τ=1

max
W(out)

cov2(v(t),u(t− τ))

σ2
vτσ

2
u

, (13)

where the input is a series of i.i.d. Gaussian random variables. A high memory capacity means that the
reservoir state r(t) contains linear information about an input u(t− τ) for some large τ . Hence, all reservoir
states between t− τ and τ should be highly correlated. The rank of RR⊤ is equal to its number of non-zero
singular values. This is equivalent to the number of non-zero singular values of R⊤R, which represents the
correlations between reservoir states at different times. Since a high rank reflects that the reservoir effectively
has a large number of reservoir states to use in its functional approximation, and a low rank reflects a high
memory capacity, maximizing linear memory capacity and functional approximation accuracy appear to be
mutually exclusive tasks. This is related to the well-known memory-nonlinearity trade-off [23]; the more
nonlinear the reservoir dynamics are, the shorter the memory becomes. This prediction is verified by
figure 2. Comparing panels (b) and (c), we see that when the memory capacity peaks, the rank is low.
Comparing panels (a) and (c), we conclude that high linear memory capacity is not indicative of high
prediction performance. This means that prediction performance does not rely on being able to reconstruct
the time series far back in time, but rather on the ability to represent several time scales of the input. Two
important points should be made: Firstly, the defined memory capacity only measures linear information,
and so the result does not imply that the reservoir does not need memory to perform a prediction. Indeed,
when only partial information is presented to the network, memory is necessary to construct a time-delay
embedding. When linear memory capacity is low, the reservoir can still retain nonlinear information about
the input. In [24], information processing capacity was introduced as a metric that extends memory capacity
to nonlinear cases. However, as shown in [23], nonlinearity inherently degrades memory of the input, and

7
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Figure 3. Bifurcation diagram of first component of the output v(t) of an ESN trained on the Lorenz63 time series with
sNσ2

A = 10−2. The ridge parameters are (a) k= 100, (b) k= 10−2, and (c) k= 10−4.

thus, long memory, which is only afforded by linear dynamics, and ‘rich’ reservoir dynamics, cannot be
achieved simultaneously. Secondly, memory capacity is computed using an i.i.d. input, meaning there are no
time correlations in the input series. In general, time correlations exist for input series, and so each input
carries with it information about previous inputs. This can affect the amount of linear correlation the
current reservoir state has with previous inputs, and so panel (c) cannot be used to directly infer the linear
memory of the reservoir in panel (a). However, we expect the parameter regions with high correlation with
previous inputs to be similar for the case of inputs with time correlations.

5.1.4. Saturation of activation function
The performance drops once nσ2

in becomes too large. In this limit, the local fields of the reservoir neurons
become so large that the activation function saturates and information about the input time series is lost.

5.1.5. Ridge parameter
When nσ2

in is small, prediction fails the full information case (see panels (a) and (c) in figure 1). To see what
causes this, consider that in order for the ESN to predict a time series, it must be able to reproduce the
Lyapunov spectrum of the input time series [1]. This means that the norm of the matrix A+W(in)W(out)

relevant for the prediction dynamics (2), must be sufficiently large. However, the ridge parameter k sets a
limit for how large the norm ofW(out) can be. Consider, for example, a chaotic time series. To predict the
chaotic time series, nσ2

in must exceed a threshold value so that the prediction dynamics can be chaotic.
The same line of arguments hold for the case when partial information is provided (panels (b) and (d)). To
observe the effect of changing the ridge parameter, we compute a bifurcation diagram of the reservoir
neurons in an ESN trained on the Lorenz63 system. In figure 3, we see how the ridge parameter changes at
what value of nσ2

in the prediction dynamics bifurcates from having a stable fixed point at zero. Beyond this
bifurcation, the prediction dynamics eventually becomes that of the Lorenz63 system. For smaller ridge
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Figure 4. Prediction performance, measured as the average Lyapunov time before the prediction fails (εα(t)> 0.5 for any α), and
RR⊤ of two simple ESNs trained on the y-component of the Lorenz63 system, sampled at different rates δt. The reservoir
dimension is N= 500, and the result was averaged over 200 independent trials.

parameters, the dynamics is more prone to become unstable. Indeed, the effect of the ridge parameter is to
regularizeW(out) such that its entries do not diverge to infinity due to RR⊤ having an undefined inverse
(see (3)). Thus, this instability is expected as k decreases. The bifurcation is shown in figure 1 as a blue line
and corresponds to the second panel in figure 3. In figure 1, the contour where the bifurcation occurs looks
different for the full and partial information case because, for the case when only partial information is
provided, the reservoir fails to embed the input dynamics and the prediction dynamics does not become
chaotic.

5.2. Independence of δt
To study the dependence on changing δt, we employ the ‘simple ESN’ architecture [25], where A is a diagonal
matrix. This is done because it allows us to control the time scale of the reservoir neurons explicitly. In the
result below, we deterministically set the diagonal elements of A to Aii = α i

N for a positive parameter α. The
time scale of each neuron is simply determined by the magnitude of its corresponding weight in A. If the
ESN depends on δt, and by extension, the memory requirements of the time series to be predicted, the
parameter region where prediction works should change when the sampling rate δt is changed. As seen in
figure 4, apart from decreasing the performance, decreasing δt does not shift the parameter region where
prediction works significantly, despite being altered by one order of magnitude. This is consistent with the
previous observation, that the performance depends on the number of uncorrelated reservoir states, as
measured by the rank of RR⊤. What changes is instead the prediction performance. This is consistent with
the result from [14], where δt= 0.1 is closer to the optimal sampling rate for time delay embedding of the
Lorenz63 system. We note that the rank is larger when δt is smaller.

6. Conclusions

Correctly selecting tuning parameters is crucial for successful reservoir computing. However, no clear
understanding of how the parameters should be selected exists, and the choice largely comes down to
heuristics. In this article, we explain how prediction performance depends on parameter selection when full
phase space information or partial phase space information is provided to the network.

We find that there is a qualitative difference between the two cases. When partial phase space information
is provided, the reservoir must construct a time-delay embedding of the input time series. To approximate
the functional relationship between the embedding and the original space of the time series, the reservoir
network uses a weighted sum of reservoir states; the more states, the more accurate the approximation. We
show that the effective number of available reservoir states used for the approximation is equal to the number
of independent states, quantifies by the number of non-zero singular values of the matrix RR⊤. This imposes
a condition on the relationship between the strength of the recurrent connections of the reservoir and the
strength of the input signal. If the input signal dominates the dynamics, the reservoir states are strongly
correlated, making the approximation of the functional relationship poor. On the other hand, no such
condition is found when full phase space information is provided. This is because all the information
required to predict the next time step is provided in the current time step. Hence, the reservoir network can
simply perform function fitting to model the input time series.

9
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That the approximation of the functional relationship between the reservoir embedding and the original
space becomes more accurate, thus improving the network’s prediction performance, when reservoir states
become uncorrelated has a consequence for the role of linear memory capacity. As memory capacity
increases when the linear correlation between the reservoir states at times t and t− τ increases, maximizing
memory capacity and predictive performance are mutually exclusive tasks. Memory capacity should
therefore not be used as a metric associated with predictive performance.

Our results also show that tuning the time scale of the reservoir in accordance with the time scale of the
input time series is unnecessary. In fact, the lower bound of the reservoir time scale for successful time-series
prediction is independent on the sampling rate of the input time series. Instead, it depends on when the
reservoir states start to become uncorrelated. However, we find that predictive performance can be improved
by tuning the sampling rate in the same way it can be optimized in time-delay embedding literature.

Finally, we find that a lower limit for the strength of the input exists for both the full and partial
information case due to that the ridge parameter limits the norm of the output connection strength. Limiting
the norm constrains the maximum achievable maximal Lyapunov exponent of the reservoir dynamics during
prediction. Hence, if this exponent is smaller than that of the input time series, prediction is impossible.

In conclusion, we have studied the parameter regions where reservoir computing is successful in the case
of full and partial information, and found they differ qualitatively. The result is a step in the direction of
clarifying how parameters should be selected in an informed way, instead of relying on heuristics. More
research is needed to understand how the reservoir can be optimally designed to develop uncorrelated
reservoir states to improve predictive performance.
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Appendix

The training Lyapunov exponent λT is defined as

λT = lim
t→∞

1

t
log

|D(t− 1)AD(t− 2)A . . .D(0)Aδr(0)|
|δr(0)|

, (A1)

where D(t) is a diagonal matrix with entries

Dii(t) = 1− tanh2

 N∑
j

Aijrj(t)+
n∑
α

W(in)
iα uα(t)

 , (A2)

and δr(t) is the separation between two initially infinitesimally nearby reservoir states. To derive (7), we start
from (A1) by writing δr(0) = δr0n, where n is the unit vector pointing in the direction of δr(0), and denote
the matrix product as Jt =D(t− 1)AD(t− 2)A . . .D(0)A. Using this, we write (6) as

λT = lim
t→∞

1

2t
ln
(
n⊤J⊤t Jtn

)
. (A3)
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Assuming the decay of correlation between consecutive D(t)Amatrices is exponential, and that the
distribution of the elements Dii(t) converge rapidly, we approximate the matrices D(t)A as independent and
identically distributed and use the Furstenberg theorem to obtain [26]

λT = lim
t→∞

1

2t
⟨ln
(
n⊤J⊤t Jtn

)
⟩, (A4)

where the average is taken over samples of inputs and ensembles of A andW(in) matrices. We assume that the
average over samples is equal to the time average of the input time series. The theorem states that in the limit
of large t, the Lyapunov exponent is a non-random quantity. If the entries of Jt reach a stationary
distribution, then the product n⊤J⊤t Jtn has a negligible variance in the limit of large N. In this limit, one
obtains

λT = lim
t→∞

1

2t
ln⟨n⊤J⊤t Jtn⟩. (A5)

We use the result derived by Newman for products of i.i.d. random matrices [26, 27] to simplify the
expression to

λT =
1

2
ln⟨n⊤(D(t)A)⊤D(t)An⟩. (A6)

The proof of this equivalence requires the distribution of the random variable |D(t)Az(t)|
|z(t)| , where z(t) is a

random N-dimensional vector, to be independent on z(t). Using the Euclidian norm, we have

|D(t)Az(t)|2

|z(t)|2
=
z⊤(t)A⊤D2(t)Az(t)

z⊤(t)z(t)
. (A7)

The elements of the matrix A⊤D2(t)A are sums of all the diagonal entries of D2(t), each weighted by the
product of two entries of A. As the elements of A are i.i.d. when N is large, this sum approaches a mean value
that is independent of the direction of z(t). The proof then proceeds by stating that, if the random variable
|D(t)Az(t)|

|z(t)| is independent of z(t), then

ln |Jtz(0)|=
t−1∑
k=0

ln
|D(k)Az(k)|

|z(k)|
(A8)

is a sum of uncorrelated variables. The result in (A6) follows by employing the law of large numbers.
Proceeding by using the assumption that the entries of D(t)A are approximately i.i.d. (A6) can be evaluated
to be

λT =
1

2
lnN−1⟨tr

[
(D(t)A)⊤D(t)A

]
⟩. (A9)

The argument of the logarithm can be rewritten as

N−1⟨tr
[
A⊤D2(t)A

]
⟩= N−1

N∑
i

⟨
D2

ii(t)

 N∑
j

A2
ij

⟩

= N−1
N∑
i

⟨
D2

ii(t)sNσ
2
A

⟩
= sσ2

A

N∑
i

⟨D2
ii(t)⟩. (A10)

Thus, we finally obtain

λT =
1

2

[
ln
(
sNσ2

A

)
+ ln

(
N−1

N∑
i

⟨D2
ii(t)⟩

)]
. (A11)

This result is equivalent to the logarithm of the square root of (10) in [7], derived there for Gaussian
white-noise inputs. Our derivation shows that (A11) is valid for general, stationary time series with rapid
decay of time correlations.

ORCID iD

B Mehlig https://orcid.org/0000-0002-3672-6538

11

https://orcid.org/0000-0002-3672-6538
https://orcid.org/0000-0002-3672-6538


Mach. Learn.: Sci. Technol. 3 (2022) 045021 L Storm et al

References

[1] Pathak J, Lu Z, Hunt B R, Girvan M and Ott E 2017 Chaos 27 121102
[2] Lim S H, Theo Giorgini L, Moon W and Wettlaufer J S 2020 Chaos 30 123126
[3] Lu Z, Pathak J, Hunt B, Girvan M, Brockett R and Ott E 2017 Chaos 27 041102
[4] Kim J Z, Lu Z, Nozari E, Pappas G J and Bassett D S 2021 Nat. Mach. Intell. 3 316–23
[5] Jaeger H 2001 Bonn, Germany: German National Research Center for Information Technology GMD Technical Report 148 p 13
[6] Verstraeten D, Schrauwen B, d’Haene M and Stroobandt D 2007 Neural Netw. 20 391–403
[7] Massar M and Massar S 2013 Phys. Rev. E 87 042809
[8] Wainrib G and Galtier M N 2016 Neural Netw. 76 39–45
[9] Hart A, Hook J and Dawes J 2020 Neural Netw. 128 234–47
[10] Ozturk M C, Xu D and Principe J C 2007 Neural Comput. 19 111–38
[11] Pyle R, Jovanovic N, Subramanian D, Palem K V and Patel A B 2021 Phil. Trans. R. Soc. A 379 20200246
[12] Griffith A 2021 Essential reservoir computing PhD Thesis The Ohio State University
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