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ABSTRACT 

The known Fourier-Chernikov algorithm of linear inequality system convolution is complemented with an original 
procedure of all dependent (redundant) inequalities deletion. The concept of “almost dependent” inequalities is defined 
and an algorithm for further reducing the system by deletion of these is considered. The concluding algorithm makes it 
possible to hold actual-time convolution of a general inequality system containing up to 50 variables with the rigorous 
method of dependent inequalities deletion and up to 100 variables with the approximate method of one. The main ap-
plication of such an approach consists in solving linear inequality system in an explicit form. These results are illus-
trated with a series of computer experiments. 
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1. Introduction 

Polyhedron orthogonal projection (POP) was devised by 
Fourier [1] as early as in the 20s of the XIX century. 
Some properties of an arbitrary convex set orthogonal 
projection are considered by Shapot [2]. However, the 
closed algorithm of generating orthogonal projections to 
any subspaces is known only for linear polyhedral sets. 
For a long time the POP didn’t find obvious practical use 
as with every elimination of variables it initiated a large 
number of dependent (redundant) inequalities. It resulted 
in a rapid increase in their total number and as a rule 
didn’t make it possible to solve the problem within an 
acceptable timeframe. In the middle of the XX-th century 
Chernikov [3] devised methods of dependent inequality 
determination, making substantial progress towards re-
solving this problem. With their help it became possible 
to increase the dimension of the problem, solved with 
POP within acceptable time, from 5 - 8 to 8 - 15, how-
ever, a further increase of dimensions resulted in the 
former problems of expansion. Methods of dependent 
inequalities in large linear systems determination began 
to develop in the 80s (ref., for example, Bushenkov and 
Lotov [4], Lotov [5], Eremin and Makhnev [6]). A new 
constructive approach to the implementation of the Fou-
rier-Chernikov algorithm (FCA), which makes it possi-
ble to control inequality number expansion during the 

process of variable elimination, was devised by Shapot 
and Lukatskii [7]. From this point on we shall refer it to 
as the constructive algorithm of convolution—CAC. 

Here we give a preliminary formulation of the main 
algorithm. Let the 0  system be given, enclosing k of 
linear equations and m of linear inequalities, defining 
non-empty set in real space . Let us suppose that the 

0  investigation aim is to find its nonbasic variable 
population and to write each of them in an explicit form. 
Such a notation can be represented in two ways: 1) in the 
form of this variable equality to a number or to a linear 
function of numerically defined variables; 2) in the form 
of value bounds restricted by either numbers or by linear 
functions, which depend on previously numerically de-
fined variables. Previously defined variable numerical 
values” should be considered only within the framework 
of a procedure containing the following two stages: 

S

nR
S

 Elimination of all equations from 0S  by means of 
“Step of Jordan Elimination” (JE) series. Then r k  
of variables will be assumed to be set equal to the 
linear functions, which depend on the rest p n r   
variables, where rankr   of the equation subsystem 
( r k , if all equations are mutually independent). 
These variables will gain numerical values after solu-
tion of the remaining system of inequalities 1S  to 

pR . Let us suppose that every inequality defines 
non-negativity of the corresponding basic variable. 

 1S  “inequality system solution” is generated by an *Corresponding author. 
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investigator in the form of an arbitrary sequence of p 
variables, in which the first variable has one or two 
numerical boundaries and each of the consequent 
variables is limited by linear functions, which depend 
on previously considered variables. Such a pyramidal 
( 2S ) representation of inequality system 1S  is similar 
to limit defining in multiple integrals. With such a 
representation it is quite convenient to select a working 
point in S , being guided by some conceptual criteria. 1

Let us consider an algorithm of 2  sequence genera-
tion. Let us compare 1   inequality system with the ma-
trix 

S
S

pM , which defines p-dimensional convex polyhe-
dron. Let us decrease its dimension to , i.e. let us 
pass to the matrix 

1p 
1pM  , eliminating an arbitrary variable 

jx  from the coordinate set. This can be done in two ways: 
either by assigning a numerical value to jx , i.e. by mak-
ing 1 , section or by constructing the union of all sections 
along 

S

jx , i.e. the 1  orthogonal projection on subspace 
not containing 

S

jx . We will use the second way of 
eliminating variables. Let us generate  p t

1
M  matrix 

sequence with 1, ,p p , ,tM M 

S

M  polyhedra de-
creasing dimensions. Precisely this sequence will make it 
possible to easily generate 2 . Really the 1M  matrix 
contains only two columns, the first with the coefficients 

uj  corresponds to a jx  variable and the other one with 
the coefficients jb —to free members.  

Denote by  0a 11 u umin |q b  uj uja and  

 12 max 0u u uj ujq b  a a  . 

Then it is not too difficult to see that 12 11jq x q  , 
where 11  and 12  are numbers. In the same way it is 
possible to represent the bounds for r

q q
x  variable using the 

2M  matrix with the rx  and jx  variables, 22 21rq x q  , 
where 21  and 22  are linear functions, which depend 
on 

q q

jx . If you select jx  “attractive” value within the 
specified range, the rx  acceptable range will be a nu-
merical one. This method of boundary function  p tM   
matrix construction and the selection of variable “attrac-
tive” values can be prolonged to the pM   parent matrix. 
From this point on we shall refer the considered approach 
to as POP. 

Fourier algorithm is described in Section 2. Different 
methods of redundant inequality cleanup are considered 
and a formal description of POP is given in Section 3. The 
stability and complexity of POP algorithms are estimated 
in Section 4. The results of numerical experiments are 
discussed in Section 5. 

2. Orthogonal Projection Fourier Algorithm 

Let  be a real n-dimensional space. The set nR

 
 ,

: ,
:

y Q :

k
nn k

k n k k
n k n

n

x Q u x Q

v y v Q





       
 
       

R

R

u


P Q Q 






 

is referred to as the  set projection on the n
nQ R

n kR  subspace. 
Let us consider the n  non-empty bounded set, de-

fined by the linear system of inequalities 
Q

 
1

0, 1,2,
n

n ji i j
i

Q a x b j m


J
      
 
  . 

Suppose we want to build , where 1
1

n
nQ 
 R 1nR  

doesn’t depend on an rx  variable. According to the algo-

rithm of linear inequality systems free convolution devised 
by Fourier [1] let us divide J index set into three groups: 

  
 

(1) (2)

(3)

1, , ; 1, , ;

1, ,

Q s Q s

Q p m

 



    

  

 



p
 

so, that for them . 0; 0; 0vr r ra a a   
Solving each of two first groups of inequalities with 

respect to rx  we obtain 

1

1

i i
i rr

r i
i rr

l a x b
a

x l a x b
a

  


 






      
  

i 

        
   




          (1) 

1, , ; 1, ,s s p      

Eliminating rx  from these relations, i.e. combining 
each inequality of the first group with each inequality of 
the second group we obtain 1 1n n , generated by PQ Q 
 s p s  inequalities, which have the form 

0

1, , ; 1, ,

i i
i

i r r rr r

a ba b
x

a aa a

s s p

  

  

 



                    
  



 

      (2) 

and m p  inequalities of the third group. 
As a matter of fact, 1 :nx Q    

         
1,1,

max min
s ks

x l x l x x 
 

 
    


  

and then    , :rx x x       

 , r nx x Q  . 

On the other hand, if x  doesn’t comply with the 
 0 0,  -th inequality of (2), then any rx , complying 
with the 0  inequality of (1), contradicts the 0 -th 
inequality and vice versa. 

If the first or the second group of inequalities is empty, 
i.e.  : 0jr jrj J a a 0    , then for any x , comply- 
ing with inequalities of the third group,

 

and 
for any 

 
  3x Q

     , .r nr rx x x  
(3)

1 n nP Q Q
x x x   Q  Therefore, 

in this case .  
With the help of the considered algorithm it is possible 

to eliminate any subset of variables and to construct the 
n k

k nP Q R  orthogonal projection, where 1 .k n   
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Since all computations are performed in the form of a 
matrix notation, the nQ  set is defined by the matrix, 
which we shall denote as 0M . Then the k n , projec-
tion generated as a result of eliminating k variables, is 
defined by the k

P Q

M  matrix. If , then the k1k n  M  
contains only nx  column and the column of constant 
term. The (1) formula, which corresponds to it, has the 
form: ,n n nx x x   where   ,n s1 2 , ,max ,x b b b   

 , 1 2n s s s p    Such a notation makes it 
possible to select any value of 

min ,x b b b , .
 0

n n ,n nx x x  x variable 
of the n  projection on the nQ x  axis, i.e. a permissible 
value. The same situation will occur, if in the 2nM   
matrix you multiple the nx  column by 0

nx . And in general, 
during “the descent from the sequence of sM  matrices” 
after selection of the s s

0 : 1, 2, ,x x s n n n k      
variables arbitrary permissible values and multiplying the 

kM  matrix corresponding columns by them we shall 
obtain the acceptable range for the 1n k .variable value 
selection. Therefore, it is possible to say, that the 

k  matrix sequence allows us to 
obtain in explicit form the solution of the inequality sys-
tem defined by . 

x  

: 1 , n 

Q

2, ,1M k n 

n

The considered Fourier algorithm, in spite of its 
seeming simplicity, is usable only for the simplest sys-
tems of inequalities. The necessity of all   -th pairs 
combining while eliminating each variable causes a rapid 
expansion of inequality number with elimination of 
variables. In particular, if after  variable elimina-
tion a system of 1k  inequalities is obtained, then after 
k-th variable elimination we shall obtain  

1k 
r

 2
1 2r1k kr r   1k . The  lower boundary is im-

plemented in the case if  and 
kr

p  m 1s  , or 1p s  , 
and the upper boundary if p m  and 2 2ks r  . Here 
a large percentage consists of generated inequalities are 
dependent. So, if , then the accessible upper 
bound for  is  of inequalities. 

0 10
130

r
r 2 15

Thus, intensive expansion of inequality number with 
elimination of variables is the main obstacle for POP use 
in problems of practical importance. To overcome this 
obstacle it is first of all necessary to have effective algo-
rithms for determination of dependent inequalities gener-
ated while using the Fourier algorithm. From this point 
on we shall refer to them as “matrix cleanup” algorithms. 

3. Methods of Eliminating Dependent 
Inequalities 

3.1. Fourier-Chernikov Algorithm (FCA) 

Motzkin et al. [8] and Chernikov [3] offered a serious 
improvement to the Fourier algorithm related to the 
abandonment of generating some dependent inequalities. 
By endowing each inequality of parent system with a 
primary subscript (number) and by joining (disjuncting) 
the subscripts while combining inequalities in pairs Cher- 

nikov complemented the Fourier algorithm with the fol-
lowing two rules: 

(ChR1) With eliminating the -th in succession ine-
quality only those inequalities which generate the sub-
script containing not more than  of primary sub-
scripts are to be combined (Chernikov’s first rule); 

h

h 1

(ChR2) The pairs containing some other inequality to-
tal subscript shouldn’t be combined in pairs (Chernikov’s 
second rule). 

In FCA (ChR1) is verified during the process of Fourier 
inequalities combining and the (ChR2) is verified after all 
combinations not contradicting (ChR1) have been gener-
ated. With the help of Chernikov’s rules all dependent 
inequalities are determined in the total polyhedra assem-
bly, i.e. for all systems of homogeneous inequalities. 
However, for the inequalities with fixed constant terms 
these rules do not by any means determine all dependent 
inequalities. 

The validity of this statement is readily illustrated by 
simple numerical examples. To generate them and to 
conduct consequent computational experiments we used 
general linear programming (LP) generator of inequality 
system:  

1

0, 1
N

j ji i j
i

y a x b j


    N , 

where 

   

 

 

0.5
1

3

0.5

( 1)

1

1 3
1 , mod 3

3

0

1
1

3
, , 1, , ,

1
max, , 1, , .

j i

ji

j

j

iN

i i i
i

i
i j

a j i

b i j N
j

с x c i N
i








    
0;          



   
  


  





  (3) 

The bounds of nonbasic variable are: 0.5 2,ix   
1,2, ,i N  . 

In the first example for the case where 7N   and 
using the Fourier algorithm without applying Cherni- 
kov’s rules 587115 inequalities were generated with the 
elimination of the 7-th variable. In the case where N = 8 
the use of the Fourier algorithm led to the memory over-
flow. In the second example where , application 
of Chernikov’s rules, but without determination of all 
redundant inequalities, generated the results given in 
Table 1. But if you use the algorithm of dependent ine-
quality complete cleanup in this example, convolution 
results will appear to be quite different. They are given in 
Table 2. 

10N 

Thus, the prospects for practical use of convolution 
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Table 1. No determination of all redundant inequalities. 

Iter. No. 1 2 3 4 5 6 7 8 9 

Fourier 26 50 115 298 1466 8023 30,777 125,149 403,925

Chernikov 26 34 46 106 212 393 749 1335 2369 

 
Table 2. With determination of all redundant inequalities. 

Iter. No. 1 2 3 4 5 6 7 8 9

Fourier 19 25 16 11 10 7 8 10 3

Chernikov 19 18 13 11 10 7 8 8 3

Complete Cleanup 16 13 11 9 7 6 6 3 3

 
algorithms substantially depend on the possibility of de-
termination of dependent inequalities generated in the 
framework of FCA. It should be pointed out, that 
Chernikov [3] also considered the method of all redun-
dant inequalities with fixed constant terms complete 
cleanup. It is based on a computation of cone generator 
fundamental system associated with the system of linear 
inequalities. According to Preparata and Shamos [9], 
Shevchenko and Gruzdev [10] the corresponding algo-
rithm has an operation number polynomial estimator on 
linear inequality system cardinality with a fixed dimen-
sion. In particular, if  is the inequality number (car-
dinality), n is the variable number (dimension), then the 
operation number in this algorithm has the estimate  

m

1
2

n

O m
   

 


 




. As the number of inequalities can increase  

rapidly during the convolution process, such algorithm 
use does not seem to be of practical importance. 

3.2. A Formalized Description of POP 

Step 0. Clear the counter of variable eliminations 0I  . 
Read an initial matrix pM  of the linear inequality 

system, where —the number of variables. p
Endow each linear inequality  a primary sub-

script . 
0l 

 ind l
Step 1. Choose a column , which has t A  positive 

and  negative elements, and multiplication B A B  
being minimal. If such a column is absent, then proce-
dure is complete, otherwise 1I I  . 

Note, that under parallelepiped restrictions on all 
variables a premature end is possible only for an incom-
patible system, as otherwise there would be a non 
bounded variable, in the contrary system. 

Step 2. Exclude the variable tx  by (1), (2) formula 
from the inequality system. As each new inequality is 
generated, let us form its subscript  by uniting the 
subscripts of the corresponding pair. We do not include 
the inequalities being redundant with the 1-st Chernikov 

rule, i.e. number of primary indexes (ChR1)  

(ind)

(length(ind) 1)I   don’t include in the system. 
Step 3. Carry out a control of subscript pairs on (ChR2) 

( ind ind 
ind

), then delete the inequality with subscript 
  from the system as a redundant one. 

Step 4. Carry out after the full cleanup in the inequal-
ity system. 

Step 5. Save p IM   matrix I -th iteration of inequal-
ity system and the number 

t
 of excluding vari-

able. If 
 p I 

1I p  , then return to Step 1, otherwise the 
end. 

3.3. The Algorithm of Building of an Inequality 
System Solutions in Explicit Form 

Here we give a formal description of the algorithm in 1.  
This procedure means that all  steps of variable 

elimination have been implemented. Then the matrix 

1

1p 

pM   contains the single variable with number  and 
the matrix 

(1)t

p jM   contains  variables with numbers j
   j1 ,,t t . 0M  is the initial matrix of linear problem 

with  variables. p
For 1, ,j p   do 
Step . If j 1j  , then go to 2, otherwise: 
1. In the matrix p jM   we fix the values of variables, 

which were changed in the preceding steps  
0 0

(1) (1) ( 1) ( 1), , ,t t t j t jx x x x    

as a result the matrix p jM   contains the single variable 

( )t jx .  
2. Using the matrix p jM  , the solution of an inequal-

ity system with this single variable is formed as the range 
of its acceptable values: ( )j t j jA x B 

 
. We choose a 

desired value 0
( )t jx   from this range. If , then 1j p 

1j j   and return to 1, otherwise the end. 

3.4. Constructive Approach to Determination of 
Dependent Inequalities in Polyhedral Sets 

The problem of dependent inequalities determination is 
rather relevant for various applications. It was considered 
by many authors both in the context of projections 
method Bushenkov and Lotov [4], Lotov [5], Eremin and 
Makhnev [6] and independently Efremov, Kamenev and 
Lotov [11], Golikov and Evtushenko [12], Gutman and 
Ioslovich [13], Paulraj and Sumathi [14]. Before we de-
veloped and programmatically implemented several ap-
proaches to the determination of dependent inequalities 
in linear systems Shapot and Lukatskii [7,15]. We de-
scribe and substantiate the algorithm of Shapot and Lu-
katskii [7] further in this text. 

In spite of the fact that the problem of dependent 
inequalities determination after FCA algorithm iteration 
is considered, the devised algorithm is of a general nature 
and is not associated with the orthogonal projection spe-
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cific procedure. To ensure investigated polyhedron bou- 
ndedness we require that the upper and lower boundaries 
are defined for all free variables. These boundaries shall 
define the survey coverage of models in the form of a rec-
tangular parallelepiped, of interest for the investigator. 
However, in the case when any of parallelepiped restric-
tions appears to be dependent it should be eliminated from 
the corresponding matrix like any other dependent in- 
equality. Here we remind the dependent inequality concept. 

Definition 3.1. The inequality  is dependent 
(redundant) on a set , if it is satisfied in each point of 
this set and is incompatible with , if it is satisfied in 
no point .

  0l x 

Q
Q

x Q  
The analysis of  inequality dependence or 

incompatibility conditions with respect to the  set can 
be founded on any of the following equivalent and obvi-
ous criteria. 

  0l x 
Q

(Crit1) In order for the  inequality could be:   0l x 
a) dependent on , or  Q
b) incompatible with ,  Q
It is necessary and sufficient to meet the conditions: 
a)   min 0,x Q l x 

 min 0l x 
r

b) . x Q

(Crit ) The  inequality is dependent on 2

 
  0l x 

 0jQ l x j  
0

  if and only if 
It is representable as , 0,j j j

j

l u l a u a 


   
 

Chernikov [3]. 
(Crit3) a) Elimination of any independent inequality 

from the system of inequalities causes region of feasibil-
ity expansion, i.e. Q Q  and Q Q ; 

b) Elimination of any dependent inequality from the 
system of inequalities doesn’t cause region of feasibility 
expansion, i.e. Q Q . 

In the general case, when the  inequality 
dependence on the 

  0jl x 

 
1

, 1, , ,

0, 1, , ; ,

j i ii

n

i i
i

Q x x x i n

l x a x b m j    



   


     








 

set is investigated it is sufficient to use (Crit1) and to 
solve the corresponding problem of linear programming 
(LP). However, we are interested in the complete cleanup 
of matrix in the framework of orthogonal projecting pro-
cedure (OPP), when inequalities number rapid expansion 
is possible with variables elimination. Suppose, that at 
the OPP next step after FCA implementation the gener-
ated system of m inequalities can contain noticeable 
amounts of dependent inequalities. In this situation the 
approach based on (Crit1) direct use for m inequalities 
testing assumes LP  problems solving. It is obvious 
that such an approach is not attractive. Let us consider a 

fundamentally different way of slump in amount of cor-
responding computation while verifying inequalities in-
dependence. 

m

Suppose that a basic solution is found for the linear 
inequality system defining -dimensional compact poly- 
hedral set  

n

  , 1, , , 0, 1, 2,i i i sQ x x x i n l x s m         (4) 

obtained after the OPP next step and containing no pair-
wise equivalent inequalities. As a reminder, some solu-
tion of (4) is referred to as a basic one if it satisfies all 
constraints and transforms at least n inequalities into 
equalities. Relying on the conditions considered below 
we can verify dependence of all inequalities correspond-
ing to the basic solution matrix (BSM). We shall first 
make some terms more precise. 

By using variable shift we may reduce our problem to 
the case 0ix  . We also transform i ix x  to the form 

0i ix x   and add it to the constrain set  sl . Below 
we shall refer to the jx  variables in the formula (4) as 
nonbasic (free) ones and the sl  variables—as basic 
(constrained) ones. Moreover, in respect of any sim-
plex-matrix we shall speak of column and row variables. 
Any of these variables is associated with its non-nega- 
tivity condition. Therefore, each inequality corresponds 
to one of the variables. 

From this point onwards we shall refer to the differ-
ence between the dependence in respect of the  set 
and the 

Q
  0jl x   dependent inequality: 

Definition 3.2. The jl  is the first kind, if  

 : 0jx Q l x   . 

Definition 3.3. The jl  is the second kind, if 

 : 0jx Q l x    and  : 0jx Q l x   . 

The analysis of inequality dependence, defining the 
 polyhedral bounded set, can be based on the condi-

tions given below. 
Q

1) For row variables. If after the appropriate JE step in 
the course of the BSM construction or investigation the 
xs-th with all non-negative coefficients constant term 
inclusive is discovered, then in accordance with the (Crit2) 
the  inequality is dependent and the 0sx  sx -th row can 
be eliminated from the matrix. 

2) For column variables. If all constant terms in the 
BSM are positive, then independent inequalities corre-
spond to all column variables non-negativity condition. 

As a matter of fact, if an sx  column variable is given 
0,sx   negative increment, the constant terms of each 

-th row j jb  will have the value .j j js sb b a x    If 
0jsa  , then ,j jb b   if , then 0jsa ,j jb b   if 

 and 0jsa  min ,s j j jsx b a   then  This 
means, that there’s the interval s

0.j b
0,x x    where the 

only s  inequality is violated, i.e. the reference set 
without this constraint will be an extended one. There-

0.x 
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fore, in accordance with (Crit3) this inequality is inde-
pendent. 

From this point onwards we shall assume, that the 
homogeneous inequalities containing zero constant terms 
correspond to the first  rows of the BSM. In this case 
all column variables correspond to the  inequali-
ties, which on the basis of the (Crit1) are not the first kind 
dependent, but represent the tangent hyperplanes. Here 
two cases are possible: 

p
0sx 

a) The  half-space contains the  face, which 
has dimension , where . Then  is 
an independent inequality. 

0sx 
n

Q
Q1 dimn  0sx 

b) The  hyperplane contains the  edge, rather 
than the Q  face, generated by  faces intersection, 
which has dimension . Then  is a 
dependent inequality of the second kind. 

0sx  Q
k

k n, 2n k  0sx 

The following is valid. 
3) The  column inequality is independent, 

when and only when there exists a point of the 
0sx 

0sx   
hyperplane, in which all row homogeneous inequalities 
are satisfied with positive change of all other column 
variables. 

As a matter of fact, if the inequality is inde-
pendent, there is 

0sx   
 0,s j

0 0: 0 0,x x l j

0,

x s  for all  
inequalities homogeneous ones inclusive. But if  

Q

0 0 0: 0,s jx x x 
0 1nx R

Q

j s 
x 

 for all column variables, then 
. Therefore, the s  hyperplane contains the 

 space, i.e. it is an independent inequality. 
0

In order to check a column inequality independence 
with regard to (2), it is sufficient to check fulfillment of 
(3) only for homogeneous inequalities. While checking 
the  column inequality independence let us con-
sider such a small shift  from the basic solution point 
simultaneously in all column variables but 

0sx 
d

sx , with 
which none of homogeneous row inequalities is violated. 
Let us assume s i i  where 

 is a small positive number, for example, 
0, : ,s x u d q  

q
1,u i

0.0001
x i 

q  . 
Herewith, 0 .ix d   Let us write down the row homo-  
geneous inequality system 0ji i ji i

i s i s

a x d a u
 

  
0.0001i iv u 

 or 

. Making a change of , we 

obtain 

0ji i
i s

a u




0.0001 0, 1, , , 0 0.9999.ji i ji i
i s i s

a v a j p v
 

       (5) 

According to (3) the  inequality is independent 
when and only when the system (5) is compatible, i.e. it 
is possible to find a basic solution for it. Let us check this 
possibility by solving the corresponding linear problem. 

0sx 

With the help of (3) it is possible to determine all de-
pendent column inequalities and to eliminate each of 
them from  by first performing the appropriate JE 
step. But if we take into account that any row inequality 
in the BSM can become a column one with the help of 

one or several JE steps, the following concluding propo-
sition is true: 

Q

Proposition 3.1. With the help of (1), (2), (3) all de-
pendent inequalities can be determined in the BSM. 

Returning to the orthogonal projection procedure let us 
note that the computation amount in the course of matrix 
complete cleanup can be reduced with regard for the fol-
lowing important point. If with elimination of a next rx  
variable the rM  matrix contains -th rows, for which j

0jra  , and the corresponding -th inequality depend-
ence was determined in the course of matrix cleanup 
during the preceding iterations, their independence re-
peated check is meaningless. Legitimacy of such an ap-
proach follows from the following obvious proposition. 

j

Proposition 3.2. If  1, , 0s nl x x   is the inequality 
independent on the n  set, then it is the inequality in-
dependent on 

Q

n sQ   set and vice versa. 
Therefore, under the FCA framework with each new 

inequality subscript building it is reasonable to comple-
ment it with “its independence temporary non-identifi- 
cation” criterion.  

3.5. Algorithm of Full Cleanup of Redundant 
Inequalities (Step 4 of 3.2) 

Step 1. Reduce the matrix of linear inequalities system to 
the BSM form, in which all free members are nonnega-
tive. 

Step 2. If there are inequalities having all coefficients 
nonnegative in BSM, we mark them as redundant. 

If all free members in BSM are positive, then we mark 
all column variables as independent and go to Step 4, 
otherwise to Step 3. 

Step 3. Mark subset of rows with null free members. 
In the cycle by column variables xs form linear problem 
(5). Solving it, we obtain the answer about the inde-
pendence of variable xs. 

Step 4. If all variables are identified by independence 
mark, then we complete the process, otherwise go to Step 
5. 

Step 5. Exchange BSM by means of JE in order for 
some row variables that were not tagged with the sign of 
independence to move to column ones. Return to Step 2. 

3.6. Methods of Matrix Additional Cleanup 

Appropriate polyhedron boundaries moderately small 
alteration, resulting in transforming some independent 
inequalities into dependent ones, is associated with matrix 
additional cleanup. 

Similar boundaries alteration can be grounded as initial 
system parameters as determination accuracy is not high 
as a rule. In such cases the position of boundaries is to be 
considered in a “near-boundary layer”. In the most general 
case similar description needs the introduction of a poly-
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hedral set comparison special measure Lotov [5], Efremov, 
Kamenev and Lotov [11]. 

Essentially boundaries alteration can be made with a 
sacrifice in both expansion (inequalities part elimination) 
and contraction (variable range restriction) of inequality 
system feasibility region. From this point onwards we 
shall consider only the first way. 

Surface fine-cellular structure is typical for linear 
polyhedra if they are defined by a large number of in- 
equalities. Therefore, its minor “coarsening” in applica-
tion studies is admissible with a sacrifice in neglecting of 
some side defined as “almost dependent (redundant)” 
inequalities. To implement such an approach it is first of 
all necessary to introduce a measure of any inequality 
dependence on a corresponding set. It is obvious that such 
measure selection is heuristic. 

Assume  is one of inequalities    0i i
i

l x a x b  

defining  set, and the Q  is the same set, but in the 
absence of this inequality. It appears that it is convenient 
to characterize this inequality measure of dependence on 
the  set with a value proportional to 

Q 

Q  min .x Qd l

  0l x 

x  
As a matter of fact, we are dealing with BSM therefore, 
the  system constant term vector doesn’t contain 
negative constant terms. If , then  is a 
dependent inequality. But if , its elimination from 

 definition is equivalent to the b  constant term in-
crease by the value 

Q
0d 
0d 

Q
d . This value is proportional to the 

distance between the  hyperplane and the vertex 
of  (in half-space l ), the least distant from it, and 
therefore, it makes it possible to infer the Q  extension 
degree. In particular, for projection of Q  on xi axis its 
extension is equal , where  is the angle be-
tween the l x hyperplane normal and i

  0
0

 u d

l x


cos

Q

u
  0 x  axis. 

Therefore, the  value itself can be used for the upper 
estimate of such an extension. It is obvious, that each 
inequality in the  dependence degree estimates should 
be comparable to each other. It follows, that they should 
be represented in “relative units”, in particular, in frac-
tions of corresponding constant terms, i.e. by the value 

d

Q

e d b

  

 , under the condition, that . Therefore, with 
the assumption of a rate value e0, we shall consider the 

j  non-homogeneous inequality to be “almost 
dependent” on Q , if the 

0b

0l x
 l x 0e b 0j 

 
j  inequality is 

dependent on the  set, i.e. if Q 0min .x Q j j

Let us consider a simple algorithm to estimate de-
pendence degree of some non-homogeneous inequalities 
in the BSM containing only independent inequalities. Let 
us compute and put in order of increasing the 

l x e  b  

sj j jsd b a  values for all  for each column 
variable 

: jsj a  0

sx . Assume the first place in this list is occupied 
by the row (several rows) corresponding to the ux , vari-
able and the second—to the vx  variable. (In the case, 
when , we proceed to the next column variable). If 

we make the JE with the  resolvent element, we will 
find that the 

0ub

vsa

u u v us vsb b b a a  
b

 constant term is negative. 
With u  increase by the ub   value the  inequality 
would be found out dependent of the second kind. It fol-
lows that 

0ux 

u ub d  . 
Proposition 3.3. If 0 u  and no negative coef-

ficients are found out among the u-th row coefficients, this 
inequality can be considered to be “almost dependent” 
and it can be eliminated from the BSM. Similar computa-
tion cycles should be repeated, the pattern of column 
variables should be changed every time. 

,e bud  

0.1e qe

3.7. Inequalities Number Expansion Process 
Control with Variables Elimination by CAC 

While using matrix additional cleanup it is possible to 
find a simple trade-off between two contradictory stimuli: 
the desire to prevent too rapid number expansion of the 
inequalities defining projections and the desire to prevent 
polyhedron surface excessive alteration. To implement 
such a trade-off let us assume two parameters. 

The first one is represented as the  inequalities 
coarsening maximum admissible rate in the course of 
matrix additional cleanup and therewith associated the 
“working value” 0

 0e

  of this rate, where the  
controlled variable can take the discrete values 
0,1,2,···,9,10. For practical use it is reasonable to assume 
the  value to be within the range of 0.05 - 0.10. 

q

0

The second parameter is the maximum admissible 
multiplicity  of row number in the matrix increase 
with elimination of variables in respect of the parent ma-
trix. Thus inequalities number admissible threshold 
valueв is 0

e

( )h

PRG r h . The  rational value depends on 
the available “computation resources” and can vary 
within 3 - 10. 

h

Let us assume that after the elimination of the next 
variable kx  the working value , and the number 
of inequalities in the matrix is k . Assume that 
after the elimination of the variable xk+1 with the help of 
FCA algorithm and the complete cleanup of matrix the 
inequalities number therein exceeds the preset threshold. 
In this case let us additionally clean the matrix with the ek 
rate. If it doesn’t provide the rk+1 value decrease needed, 
let us assume 1

0
RG

kq 
r P

1k kq q  

PRG

, then let us again additionally 
clean the matrix, but now in an “intense mode”, i.e. with 
the ek+1 rate. Let us repeat this procedure until one of the 
two conditions is fulfilled: 

1) 1kr    and , or 1 10kq  
PRG 10kq  2)  and . 1k 1

In the first case it will be possible to further intensify 
matrix cleanup restricting inequalities number in newly 
generated matrices during the following iterations if nec-
essary. In the second case the process of variable elimi-
nation with complete and additional cleanup of generated 

r 
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matrices will be continued, however, the possibility of 
matrix additional cleanup intensification will be lost. 

If in the course of variable elimination it is necessary 
to resort to matrix additional cleanup, then not only the 
corresponding matrix is compared to each -th iteration, 
but also the ek coarsening rate value, which was used 
during its generation. It makes it possible to avoid inad-
missible solutions occurring as a result of the polyhedron 
“improper” extension during “descent of matrix pyra-
mid”. Precisely, in the formally computable range of the 

k

k

x -th variable  ,k kx x  it is permissible to chose xk val-
ues only in the range  ,k k k kx x   , where 

 0.5 .kk k ke x x    

4. Stability of the Polyhedron Orthogonal 
Projection and Complexity of Its 
Algorithm 

4.1. Stability of the POP Algorithm 

Let us give an inequality system (4). It gives us a com-
pact polyhedron . Here two cases are possible: 

 is solid or singular. In the first case it is valid. 

nQR
Q

Proposition 4.1. If the polyhedron  is solid, then 
POP is stable.  

Q

Proof. Using (4), we introduce M = maxi max 
 1, 1i ix x   . Denote by jl  such a perturbation of 
inequality jl , in which all coefficients ji and free 
member 

a

jb  have an increment in absolute value not 
exceeding a given 0  . Denote by Q  the polyhe-
dron obtained if in (4) inequalities jl replaced by jl . 
Suppose that j  is the face in Q  and j

 —in Q  
asked by the conditions j  and j , respectively. 
For an inequality 

0l  0l

jl  we introduce the rate  

   2

j ji
i

N l a  . Suppose that all inequalities have  

nonzero rates. Define  
1

max j

j

N
N l

  
  


 0. We fix  



 

and take 
2 1N Mn

 


. Then we have 

       ,
1

:
n

j j j i i j
i

x Q l x l x a x b Mn   


         

It follows that    :
2j jx Q l x l x

N
 

    . We now  

take jx . Then we have   0jl x  . Hence  

     
2j j jl x l x l x

N
  

   . Note that  

   
 

,
j

j

j

l x
x

N l





   .  Immediately it is verified that there  

exists 0 0   such that with condition 0   for any  

 it is valid: 
 
 

1
2.

2
j

j

N l

N l
   It follows that j

 : ,j jx x      . Here  , jx    is the distance 
from the point to the space. 

Similarly, it is easy to see that  : ,j jx x      . 
Denote by  Q   —neighborhood of . Then we 
have 

Q

   ,Q Q Q Q    .            (6) 

Denote by  the orthogonal projection on a sub-
space. Since the distance between the points cannot in-
crease in the projection, from (6) it follows that 

P

        ,P Q P Q P Q P Q          (7) 

From (7) it follows that a sufficiently small perturba-
tion of coefficients and free members of inequalities 
leads to a small perturbation of polyhedron projection. 
This completes the proof. 

In the case of singular polyhedron an arbitrary small 
perturbation can lead to a significant change in projection 
as follows 

Example 4.1. Let  be the polyhedron defined by 
the inequalities: 

Q

1 2 1 2 1 20, 0, 0 1, 0 1x x x x x x         . 

Denote by 1  the orthogonal projection on the axis P

1x . We introduce a perturbation Q  of . Q

   1 2 1 2 11 0, 1 0, 0 1, 0x x x x x x  2 1           . 

Then we have    1 0,1P Q   and for any 0   it 
holds    1 0P Q  . 

4.2. The Complexity of the POP Algorithm 

The complexity of POP algorithm is defined by two fac-
tors: 

1) the growth of inequality number in the system by 
iterations; 

2) the complexity of the algorithm of redundant ine-
quality cleanup for a single iteration. 

Let us consider 1). Let  be a compact polyhe-
dron defined by the inequality system (4) and  be the 
orthogonal projection onto a subspace . Note 
that single iteration of the orthogonal projection proce-
dure is accompanied by a full cleanup of redundant ine-
qualities. Therefore, an inequality 

nQR

kP
nn kR R

 0
l

l   in the system 
of projection corresponds to hyperplane  0  con- 
taining a face   of  P Q

π
k . Similar to [16,17] this hy-

perplane can be represented as  projection of the in-
tersection of 1k   hyperplanes 1)j k  
of the original inequality system. Hence, we obtain an 
estimation of the number k  of inequalities for this 
projection by the binomial coefficients: 

 0(1)j   (l l 

N
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1
2

k
k mN C 

 n



.                (8) 

Here  is the number of inequalities (lj) in (4) and 
 correspond to parallelepiped restrictions. 

m
2n

At 2) we estimate the cause of complexity of redun-
dant inequality cleanup. It is determined by the number 
of appeals to the solution of linear problems (5). Typi-
cally this problem has a low dimension and is solved by 
means of the simplex-algorithm. As it is well known the 
simplex-algorithm has an exponential complexity [18]. 
Note that in the linear problem (5) the threshold  of 
accuracy of its solution is introduced. This allows the use 
of the polynomial algorithms of linear problem solution. 
Here Khachiyan [19] and Karmarkar [20] algorithms are 
known. The Karmarkar algorithm [20] is more efficient 
and has the complexity 

q

     3.5 2 ln ln lnkCompl O n L L L . 

Here  is the number of free variables of linear pro- 
blem and  is the number of bits of input to the algo-
rithm. It is suggested that a linear problem is solved for 
each inequality. Then for complexity k of 
the redundant inequality cleanup of the iteration , we 
have the majorant 

n
L

ComplConv
k

k k kComplConv N Compl  .          (9) 

5. Computational Experiment Results 

In accordance with the considered algorithm we have 
developed a demonstration version of the program im-
plementing the orthogonal projecting procedure (OPP) 
by using the language VISUAL BASIC 6th version with a 
32-bit compiler. During computational experiments the 
following computer resources were used: PC Intel-Core2 
with clock speed of 2.67 GHz, capacity of internal mem-
ory of 3.25 Gb and the operating system Microsoft Win-
dows XP Professional 2003. The computational experi-
ments aimed to analyse FCA improvement proposed 
measures effectiveness. The matrices of form (3) were 
investigated. The LP problem was used for computation 
accuracy strict check with OPP implementation. In par-
ticular, first the projection of the entire feasibility region 
is constructed on the objective function axis. Then, the 
optimal resolution vector is determined with the previ-
ously computed matrices sequence “descent”. This esti-
mation of solution accuracy is made by its comparison 
with the same problem solving by means of sim-
plex-method. Herewith material inconsistency is admis-
sible only in the case, if the problems pair being consid-
ered has an ambiguous solution. 

When the procedure is used in practice, the following 
parameters are rather essential beyond computational 
accuracy: 1) expansion maximum degree of the number 
of inequalities with the elimination of variables; 2) com-

puting time needed for the elimination of a given set of 
variables. This time depends on available computation 
resources, the specific nature of the parent matrix, the 
number of eliminated variables and after all on the algo-
rithm being used. Therefore, all experiments were held 
on the same computer, with the same structure matrices 
(3), with the same requirement of all nonbasic variables 
elimination. The matrices being considered had only 
various  N  dimensions of polyhedra. Herewith the 
parent matrix contains  rows, since  rows are 
supplemented by the requirements . Matrices in-
admissible expansion with the use of FCA only is clearly 
illustrated in Table 1 with . At the next stage 
algorithm performance capabilities were investigated 
with complete cleanup of matrices, but without addi-
tional cleanup, in particular, without their expansion 
control. At the final stage the algorithm with additional 
cleanup, i.e. with “coarsening” was considered. 

2N N
2ix 

10N 

Table 3 gives the consolidated results of numerical 
experiments for various dimensions of the parent matri-
ces. The Table 3 contains 

N—parent matrix dimensions, 
M—inequalities in the matrix number maximum ex-

pansion after its complete cleanup, 
T—time (sec) of all variables elimination, 
Relative deviations from the simplex solution of the LP 

appropriate problem: 
D1—deviation of the optimal value of the objective 

function; 
D2—maximum deviation of the optimal solution vari-

ables; 
D3—average deviation of the optimal solution vari-

ables. 
All Table 3 rows (excluding the last two rows) repro-

duce results of convolution with the use of matrix com-
plete cleanup, but without coarsening. With matrices 
cleanup in LP problems, which are represented in the last 
two rows, a coarsening with threshold 3 and maximum 
rate 0.1 for 50N   and 0.12 for  was used. 
The Table 3 analysis shows, that the rate-determining 

100N 

 
Table 3. Combined results of experiments. 

N M T D1 D2 D3 

10 20 1 <E–14 <E–14 <E–14 

20 40 6 <E–14 <E–14 <E–14 

30 66 26 3.25E–10 3.37E–9 2.82E–10

40 402 1176 3.61E–10 4.50E–9 4.35E–10

50 602 4564 9.72E–10 2.05E–8 1.19E–9

50 (coarsening) 343 454 4.00E–3 3.87E–2 1.87E–3

100 (coarsening) 506 3163 4.41E–2 2.74E–2 4.69E–4
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factor with convolution of the high-dimensional inequal-
ity systems is not so much expansion thereof, as compu-
tation time. In the above mentioned conditions the ad-
missible computation amount (76 min 4 sec) was ob-
tained with  with the use of only matrix com-
plete cleanup. The fragments of corresponding automati-
cally generated protocol, giving the idea about inequality 
system convolution history, are represented in Table 4. 

50N 

Table 4 illustrates the fact that the generated matrix 
cardinality dependence on the next iteration index is am-
biguous. It is determined by the variables elimination 
order and by the distribution of positive and negative 
coefficients in the eliminated column. 

Comparison of the data represented in the two rows of 
Table 3 for problem with  dramatizes matrix 
additional cleanup algorithm (coarsening algorithm) per-
formance capabilities. In the discussed example its use 
made it possible to reduce inequality system maximum 
expansion by 1.76 times, computation time—by 10.05 
times, however, it is accompanied by objective function 
optimal value computation accuracy loss up to the level 
of 0.004. In those cases, when such loss is admissible, 
the use of the coarsening algorithm can be considered to 
be rather effective. Below the algorithm of choosing the 
of attractive admissible point 3.3 is illustrated in example 

50N 

 
Table 4. Convolution history for N = 50. 

Iteration Fourier Chernikov Complete cleanup 

Initial 100  93 

1 157 157 106 

3 682 148 137 

6 2096 194 190 

9 4358 253 195 

12 2763 191 115 

15 142 81 69 

18 248 224 139 

21 10742 643 439 

24 35711 800 506 

28 32577 676 602 

31 3337 281 213 

34 1109 137 76 

37 2419 926 101 

40 2704 303 99 

43 1514 182 51 

46 21 21 14 

50 5 5 5 

(3) with 10N  . The course of building of system (3) 
solution in the explicit form is given in Table 5. Note 
that the value of variable 1 is calculated, i.e. it is not 
given in the dialog. 

6. Conclusions 

The computer experiments performed enable us to esta- 
blish the following: 
 The algorithms of matrix complete cleanup make it 

possible to obtain quite a high accuracy of computa-
tion. 

 A rapid increase in computation time span with prob-
lem dimensions increase is the main disadvantage of 
the demonstration version of the program used. 

 The use of matrix additional cleanup is effective in 
cases, where the initial information is in error of sev-
eral percents.  

 We can hope that estimations (8), (9) of the complex-
ity of POP are overvalued and can be improved sig-
nificantly. 

It is useful to mention the following trends of OPP use 
in applied research: 

In defining linear model of an object whose variables 
are not relevant for the investigator, though they cannot 
be neglected, the corresponding set projection to subspace, 
not containing those variables, will make it possible to 
retain all the features of the model being investigated. 
Such an application of the convolution method is known 
 
Table 5. Dialog interface for the building of an inequality 
system solution. 

Name of 
variable 

Iteration of 
convolution

Low  
variable  
bound 

High  
variable  
bound 

Field of input 
of variable 

value 

Objective 
function 

10 0.00000 3.84323 3.80000 

Variable 8 9 3.42561 4.00000 3.50000 

Variable 9 8 1.00000 1.02042 1.01000 

Variable 10 7 3.94127 4.00000 3.98000 

Variable 2 6 1.00000 1.00636 1.00300 

Variable 5 5 3.52671 3.53210 3.53000 

Variable 6 4 3.99698 4.00000 3.99800 

Variable 3 3 2.64854 2.64920 2.64900 

Variable 7 2 2.46478 2.46693 2.46500 

Variable 4 1 1.00000 1.00013 1.00010 

The substitution of the original system of constrains is over. There 
are no errors 

Option with the objective function. The objective 
function 

3.80000 

Variable 1 3.99999 
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in biophysics (Nikolaev, Burgard and Maranas [21]). 
In parametric programming problems, in which it is 

useful to find the dependence of LP problem optimal 
solution on such linear model parameters as absolute terms 
of constrains and (or) boundaries of variables (Keerthi 
and Sridharan [22]). 

In the problems of process-admissible deviations from 
any products rated values, for which operability scope 
thereof  is defined by a linear model. The use of OPP 
will make it possible use  much more fully with a 
transfer from universally accepted mutually independent 
tolerances to a system of dependent tolerances, because it 
allows us to replace a parallelepiped inscribed in  
with a polyhedron. 

Q
Q

Q

In various problems on agreeing solutions in search of 
a compromise between partners (Shapot and Lukatskii 
[7]). 

In problems of a multi-objective choice while project-
ing region of feasibility on subspace of criteria (Kar-
bovsky, Lukatskii and Shapot [23]). 
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