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1Laboratoire d’Algèbre, de Cryptographie,
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Abstract
We consider the class E of endo-Noetherian modules, i.e. the modules M which satisfying the
ascending chain condition for endomorphic kernels: any ascending chain Kerf1 ⊂ Kerf2 ⊂ · · · ⊂
Kerfn ⊂ · · · is stationary, where fi ∈ End(M). Let N be the class of Noetherian modules. It is
clear that every Noetherian R-module M is endo-Noetherian, so N ⊂ E , but the converse is not
true. Indeed, Q is a non-Noetherian Z-module which is endo-Noetherian. The aim of this work, is
to characterize commutative rings for which E and N are identical.
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1 Introduction
The ascending chain condition is a mathematical property on orders, which used by Emmy Noether
in 1921 [1] in the context of commutative algebra. The rings named, Noetherian rings, have been
the subject of extensive study to modules. The descending chain condition on ideals was introduced
by Artin. Rings in which any descending chain of ideals is finite are called Artinian. We say that a
module is Noetherian (resp. Artinian) if any ascending (resp. descending) chain of submodules is
stationary. In fact, the finiteness of the dimension of a vector space E is equivalent to the Noetherian
or Artinian condition, then we have the following properties:

(i) any surjective endomorphism is injective;
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(ii) any injective endomorphism is surjective.

Condition (i) (resp. (ii)) has inspired, the concept of hopfian (resp. co-hopfian) modules. An R-module
M is said hopfian if any surjective homomorphism from M to M is injective. This concept began with
the introduction of hopfian groups by G. Baumslag in 1963 [2]. Since then, we focused on other
issues relating to hopfian and co-hopfian properties, including:

1. the characterization of rings over which every hopfian (resp. co-hopfian, resp. fitting) module
is Noetherian (resp. Artinian, resp. of finite length);

2. the characterization of rings for which every hopfian (resp. co-hopfian) module is finitely
generated.

The question in 1 has been fully resolved, in the commutative case by A. Kaidi and M. Sangharé, who
have established in 1988 the following results in [3]: Let R be a commutative ring, then the following
conditions are equivalent:

(a) R is an I-ring;1

(b) R is an S-ring;2

(c) R is an Artinian principal ideal ring.

In 1992 M. Sangharé has established in [4]: LetR be a commutative ring, then the following conditions
are equivalent:

(a) R is an I-ring;

(b) R is an S-ring;

(c) R is an F -ring;3

(d) R is an Artinian principal ideal ring.

The characterization of FGS-rings,4 was fully resolved in the commutative case, by C.T. Gueye and
M. Sangharé in 2004 [5]. They established that: a ring R is an FGS-ring if and only if R is an Artinian
principal ideal ring.
The characterization of FGI-rings,5 was fully resolved in the commutative case by M. Barry et all in
2005 [6]. They established that: a ring R is an FGI-ring if and only if R is an Artinian principal ideal
ring. Nevertheless, the question remains open in the general case.
In 2007 A. Hmaimou et all introduced in [7], the notions of modules that involve both the conditions
of chains and endomorphism, defined as follows: an R-module M is said strongly hopfian (resp.
strongly co-hopfian) if for every endomorphism f of M , then Kerf ⊂ Kerf2 ⊂ · · · (resp. Imf ⊃
Imf2 ⊃ · · · ) is stationary. They showed that the class of strongly hopfian (resp. strongly co-hopfian)
modules is contained the class of Noetherian (resp. Artinian) modules and the hopfian (resp. co-
hopfian) modules.
Finally A. Kaidi introduced in 2009 in [8] the class of endo-Noetherian (resp. endo-Artinian) modules
as follows: anR-moduleM is said to be endo-Noetherian (resp. endo-Artinian) if for every endomorphism
fi ∈ M , then Kerf1 ⊂ Kerf2 ⊂ · · · (resp. Imf1 ⊃ Imf2 ⊃ · · · ) is stationary. He showed that the
class of endo-Noetherian (resp. endo-Artinian) modules is between the class of Noetherian (resp.
Artinian) modules and the strongly hopfian (resp. strongly co-hopfian) modules.
The purpose of this paper is to characterize rings on which an endo-Noetherian moduleM is Noetherian.
Such rings will be called EKFN -rings. We prove that a commutative ring with ascending chain
condition on annihilators is an EKFN -ring if and only if it is an Artinian principal ideal ring.

1An I-ring R is a ring such that every co-hopfian R-module is Artinian.
2An S-ring R is a ring such that every hopfian R-module is Noetherian.
3An F -ring R is a ring such that every fitting R-module is of finite length.
4An FGS-ring R is a ring for which every hopfian R-module is finitely generated.
5An FGI-ring R is a ring for which every co-hopfian R-module is finitely generated.
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Our paper is structured as follows: the first section covers the properties and basic aspects of
certain classes of modules and rings; special attention is paid to the properties of endo-Noetherian
modules. In the second section, we characterize commutative EKFN -rings satisfying ascending
chain condition on annihilators.

2 Preliminaries
The rings considered in this section are associative with unit. Unless otherwise mentioned, all the
modules considered are left unitary modules.

Proposition 2.1. (Schur’s Lemma)
If S and T are two simple modules. Then every non-zero homomorphism is an isomorphism.

Theorem 2.1. ([9], P.220)
For a ring R the following statements are equivalent:

1. R is Noetherian and every prime ideal is maximal;
2. R is Artinian.

Lemma 2.2. ([3], P.249)
Let C be a local ring with maximal ideal rC 6= 0, where r2 = 0. Let M be the total ring of fractions
of the ring of polynomials C[X], and σ the C-endomorphism of M defined for all m ∈M , by σ(m) =
rXm, then:

1. rσ = σ2 = 0;
2. If F is a C-endomorphism of M commuting with σ, then for all m ∈M , F (rm) = rmF (1).

Proposition 2.2. ([3], P.250)
Let R be an Artinian ring having at least one non-principal ideal. Then there exists an R-module M
which is not finitely generated.

Definition 2.1. An R-module M is called endo-Noetherian if any ascending chain of endomorphic
kernels Kerf1 ⊂ Kerf2 ⊂ · · · ⊂ Kerfn ⊂ · · · stabilizes, where fi’s are endomorphisms of M , i.e.
there exists a positive integer n such that Kerfn = Kerfn+1.

Proposition 2.3. [8]
A ring R is endo-Noetherian if and only if R satisfies the ascending chain condition on principal left
annihilators.

Proposition 2.4. [8]
Let M be an endo-Noetherian R-module that is a direct sum of non-zero submodules, M =

⊕
i∈I

Mi.

Then the set I is finite.

Proposition 2.5. [8]
Let Mi, i ∈ I, be a family of R-modules such that the set Hom(Mi,Mj) = {0} for i 6= j. Let
M =

⊕
i∈I

Mi. Then M is endo-Noetherian if and only if for every i ∈ I the module Mi is endo-

Noetherian.

3 The Main Results
Let R be an associative and commutative ring with identity 1 6= 0.

Definition 3.1. R is said to be an EKFN -ring6 if every endo-Noetherian R-module is Noetherian.

6EKFN is derived from the two concepts namely Endo Kernel Finite and Noetherian.
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Example 3.1. A semisimple ring and an Artinian ring with principal ideal, are EKFN -rings.

Proposition 3.1. Every homomorphic image of an EKFN -ring is an EKFN -ring.

Proof. Let R be an EKFN -ring and ϕ : R −→ S a surjective homomorphism of rings. Let M be an
S-module. Then ϕ induces a structure of R-module on the additive abelian group M by the following
map: R ×M −→ M where (r,m) 7→ ϕ(r) ·m. Then any S-endomorphism is an R-endomorphism,
and conversely.
Assume that M is an endo-Noetherian S-module. We want to show that M is Noetherian. Let
Kerf1 ⊂ Kerf2 ⊂ · · · ⊂ Kerfn ⊂ · · · be an ascending chain for R-endomorphic kernels, where
fi ∈ EndR(M). Every R-endomorphism fi, is an S-endomorphism, thus the ascending chain for
R-endomorphic kernels is an ascending chain for S-endomorphic kernels which stabilizes. So M is
an endo-Noetherian R-module, then M is Noetherian.

Proposition 3.2. Any integral domain EKFN -ring is a field.

Proof. Let R be an EKFN -ring. Let K be the field of fractions of R. We know that K has an R-
module structure. Let f be an R-endomorphism, then Kerf = 0 or Kerf = K. It follows that any
ascending chain for endomorphic kernels of K stabilizes. Then K is Noetherian. We know that the
map i : R −→ K is a monomorphism, so R ⊂ K. K is Noetherian, then K is a finitely generated
R-module, so K is a fractional ideal of R by ([10], P.134). Thus there exists r ∈ R such that rK ⊂ R.
But rK = K, hence K ⊂ R.

Corollary 3.2. Any prime ideal of an EKFN -ring is maximal.

Proof. Let P be a prime ideal of R. Let s be the canonical surjection defined by R −→ R/P where
r 7→ r̃. By Proposition 3.1 the quotient ring of the integral domain R/P is an EKFN -ring, then R/P
is a field. So P is maximal.

Proposition 3.3. Let R be an EKFN -ring. Then the set of all maximal ideals of R is finite.

Proof. Let L be the set of all primes ideals of R. Let’s show that
HomR(R/Pi, R/Pj) = {0} for all i 6= j. Let f ∈ HomR(R/Pi, R/Pj). For every prime ideal Pi,
R/Pi is a simple R-module, and by Schur’s Lemma f is zero or an isomorphism. Assume that f is
an isomorphism, we know that 1̃Pj ∈ R/Pj , so there exists a unique r /∈ Pi such that f(r̃Pi) = 1̃Pj .
For all α ∈ Pi, f(αr̃Pi) = αf(r̃Pi) = α1̃Pj = α̃Pj , but f(αr̃Pi) = f(rα̃Pi) = f(0̃Pi) = 0̃Pj , then
α̃Pj = 0̃Pj , so α ∈ Pj . Thus Pi ⊂ Pj . Conversely for all α ∈ Pj , f(αr̃Pi) = α̃Pj = 0̃Pj , but
f(αr̃Pi) = f(α̃rPi) = 0̃Pj , then α̃rPi ∈ Pi, so αr ∈ Pi, hence α ∈ Pi. Thus Pj ⊂ Pi. Finally Pj = Pi,
contradiction. Then f = 0, so HomR(R/Pi, R/Pj) = {0} for all i 6= j. Let M =

⊕
i∈I

R/Pi, let’s

show that M is endo-Noetherian. We know that R/Pi is endo-Noetherian. By Proposition 2.5, M is
endo-Noetherian. Now it follows from Proposition 2.4 that I is finite.

Proposition 3.4. Let C be a local ring with maximal ideal rC 6= 0, where r2 = 0. Let M be the
total ring of fractions of the ring of polynomials C[X], and σ the C-endomorphism of M defined for all
m ∈M , by σ(m) = rXm. Then every non-zero C-endomorphism F of M commuting with σ is such
that either KerF = rM , or is a monomorphism.

Proof. Note that a ring element m ∈ M is invertible if and only if m /∈ rM . Indeed, let m ∈ rM , and
assume that m is invertible in M i.e. there exists m′ ∈M such that mm′ = m′m = 1. Since m = rm1

where m1 ∈ M , we have rm1m
′ = 1, then r2m1m

′ = r = 0. Contradiction as r 6= 0. Conversely, if
m /∈ rM , then m /∈ rC. As rC is a maximal ideal of the local ring C, then m is invertible in C, hence
in M .
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If F (1) is not invertible, then F (1) ∈ rM . For any m ∈ rM there exists q ∈ M such that m = rq.
Hence by Lemma 2.2, F (m) = F (rq) = rqF (1) = mF (1) = 0. So rM ⊂ KerF (∗). Let’s show
that in this case for all m /∈ rM , then F (m) 6= 0. We have for all m ∈ M \ rM , rm ∈ rM \ {0},
then F (rm) = rmF (1) = 0. Or F (rm) = rF (m) = 0, so F (m) ∈ rM i.e. there exists α ∈ M such
that F (m) = rα. Assume that α ∈ rM , so F (m) = 0. Then m ∈ KerF , i.e. M \ rM ⊂ KerF
(∗∗). Hence (∗) and (∗∗) imply that M ⊂ KerF , then F is identically zero (impossible by assumption).
Hence, it follows that α /∈ rM . So F (m) = rα 6= 0. Then, for all m /∈ rM F (m) 6= 0. Hence
m ∈ KerF ⇒ m ∈ rM so KerF ⊂ rM (∗ ∗ ∗). Thus (∗) and (∗ ∗ ∗) imply that KerF = rM .
If F (1) is invertible, i.e. F (1) /∈ rM . Let m be a non-zero element of M . Let’s show that F (m) 6= 0.
In case m ∈ rM , then F (m) = mF (1). Hence F (m) 6= 0. If now m /∈ rM , then rm 6= 0, so F (rm) =
rmF (1), hence F (rm) = rF (m) = rmF (1) 6= 0. Then F (m) 6= 0. Thus F is a monomorphism.

Theorem 3.3. Characterization theorem
Let R be a ring satisfying acc on annihilators, the following conditions are equivalent:

1. R is an EKFN -ring;

2. R is an Artinian principal ideal ring.

Proof. • Assume that R is an EKFN -ring. Since R satisfies the acc on annihilators, then
by Proposition 2.3, R is endo-Noetherian, so R is Noetherian. We know by Corollary 3.2
that any prime ideal of an EKFN -ring is maximal. Thus R is Artinian. Assume that R
has at least one non-principal ideal, so there exists an R-module M which is not finitely
generated by Proposition 2.2. So M is non-Noetherian. Let Kerf1 ⊂ Kerf2 ⊂ · · · ⊂
Kerfn ⊂ · · · be an ascending chain for R-endomorphic kernels, where fi ∈ EndR(M).
Note that R-endomorphisms of M are C-endomorphisms of M which commute with σ defined
in Lemma 2.2. Hence any ascending chain for R-endomorphic kernels stabilizes. So M is
endo-Noetherian, contradiction. Thus R is an Artinian principal ideal ring.

• Assume that R is an Artinian principal ideal ring. Then, R is an EKFN -ring.

4 Conclusion

Let R be an associative and commutative ring with identity 1 6= 0. Every Noetherian R-module M
is endo-Noetherian, but the converse is not true. R is said to be an EKFN -ring if every endo-
Noetherian R-module is Noetherian. We have studied and characterized partially in this paper
EKFN -ring. Authors think that a characterization of EKFN -ring in nonsingular ring can be very
interesting.
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