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Abstract

Tuberculosis is an infectious disease which can be fatal. Hence, availability of models predicting
its potential outbreak can be very useful in its preventative strategies. This paper finds the best
mathematical model which fits onto the tuberculosis occurrence data of Ashanti Region of
Ghana, and uses the model to predict the future epidemiology and incidence of the disease in the
region to enhance anti-tuberculosis campaigns. The data used for the study was obtained from
the Ashanti Health Services and spans January 2001 to March 2013. It is evident from the
analysis that tuberculosis occurrence in the region studied can best be modeled with ARMA (1,
0) or AR(1), i.e. a stochastic time series linear model, and that tuberculosis epidemic in the
Ashanti Region is expected to be stable between April 2013 and April 2015. The Mean Absolute
Error (MAE) and the Mean Squared Error (MSE) are used to compare the in-sample forecasting
performance of three selected competing models, and the result shows that it is not always true
that the best selected model gives the best results so far as the mean square error (MSE) is
concerned. The forecasting accuracies for the obtained model, i.e. AR (1), using MAE and MSE
are respectively 16.3171 and 461.3148.

Keywords: ARMA Model in Health; Medical Statistics; Tuberculosis Forecasting; Tuberculosis
Modeling;

1 Introduction

An estimated 14 million people worldwide are infected with active tuberculosis. However, the
vast majority of tuberculosis-related deaths occur in the developing world. In 2009 alone, 9.4
million new tuberculosis cases were reported, and 380,000 out of 1.7 million reported deaths were
related to tuberculosis among people with HIV [1]. TB in Ghana predates the country’s
independence but the then government recognized the need to combat the disease due to the threat
it posed to the larger society [2]. In 2011, 8.7 million people suffered from TB-related illnesses,
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including 1.1 million cases among people with HIV,leading to 1.4 million deaths [3]. The good
news is that, according to the report of World Health Organization (WHO) in November 2010, the
number of new TB cases continues to fall in five of the six WHO regions. The exception is
Southeast Asia, where incidence remains stable. Worldwide deaths relating to tuberculosis fell by
35 percent between 1990 and 2009 [1]. Thus, on the average, TB prevalence is on the decline
worldwide.

The epidemiology of tuberculosis varies substantially around the world. The highest rates
(100/100,000 or higher) are observed in sub-Saharan Africa, India, China, and the islands of
Southeast Asia and Micronesia. Estimates provided by USAID in 2007 for South Sudan were 228
cases per 100,000 population. In South Sudan, an estimated 18,500 people develop TB, leading to
5,300 TB-related deaths annually [4]. TB is one of the top killers of women worldwide; half a
million women died from TB in 2011. The TB mortality rate has decreased by 41% since 1990. In
2011, 5.8 million newly diagnosed cases worldwide were recorded in national TB control
programmes (NTPs). This is still only two-thirds of the estimated total of 8.7 million people who
were diagnosed of TB in that year. In that same year 2011, 48% of the TB patients known to be
living with HIV globally were put on antiretroviral therapy (ART) [3]. Implementation of this
collaborative anti-TB/HIV campaign saved an estimated 1.3 million lives globally between 2005
and 2011.

TB is a disease of poverty affecting mainly young adults in their most productive years [1].TB is
an infectious disease that is caused by a bacterium called Mycobacterium tuberculosis[23], which
is a member of the Mycobacterium complex. The other members in this complex are
Mycobacterium africanum and Mycobacterium bovis. Mycobacterium africanum 1is most
commonly found in West Africa; it causes up to a quarter of cases of tuberculosis in the Gambia
[4].TB primarily affects the lungs, but it can also affect other parts of the body such as the central
nervous system, lymphatic system, kidney, spine, brain and the circulatory system. The disease
was called "consumption" in the past because of the way it consumes from within anyone who is
infected with it [5].

If not treated properly, tuberculosis can be fatal [6]. Mycobacterium bovis is the main cause of
tuberculosis in cattle, deer, and other mammals. The human bacillus might have arisen from M.
bovis in the setting of animal domestication. Human M. bovis infection generally occurs in the
setting of consumption of infected cow's milk products, Bacille Calmette-Guérin (BCQ)
vaccination for TB prevention, or intravesicular BCG installation for bladder cancer treatment [4].
The primary stage of TB does not cause symptoms. Symptoms of pulmonary TB can include:
cough that lasts three weeks or longer, presence of blood or sputum in cough, pain in the chest,
loss of weight, loss of energy, poor appetite, fever, chills, excessive sweating especially at night,
fatigue, fever, weight loss, breathing difficulty, and wheezing [11], [7].Symptoms often improve
in 2 to 3 weeks after starting treatment.

TB is a contagious disease that spreads through the air. When people with the disease cough,
sneeze, talk or spit, they propel TB germs, known as bacilli, into the air. Only a small number of
the bacilli need to be inhaled to cause an infection [8]. Babies and young children often have weak
immune system and thus much more vulnerable to the infection. Other vulnerable people are
those with any of these conditions: HIV infection, substance abuse, silicosis (8), diabetes mellitus,
severe kidney disease, low body weight, head and neck cancer, medical treatments such as
corticosteroids or organ transplant, specialized treatment for rheumatoid arthritis or Cohn’s
disecase [4]. However, not all people infected with TB bacilli feel sick. The immune system either

376



British Journal of Mathematics & Computer Science 4(3), 375-393, 2014

kills the germs, or "walls off" the TB bacilli where they can lie dormant for years. Failure of the
immune system to control infection with TB bacilli leads to active disease, when TB bacilli
multiply and cause damage in the body.

TB can be recognized through medical tests such as tuberculin skin tests, chest x-ray, and sputum
smear tests. People infected with either latent or active TB usually show a positive tuberculin skin
test and blood test results. Only people with active TB produce positive sputum smear results or
have an abnormal chest x-ray [6]. The following are the tests for pulmonary TB: Biopsy of the
affected tissue, Bronschoscopy, Chest CT scan, Chest X-ray, Interferon-gamma release blood test
such as the QFT-Gold test to test for TB infection, Sputum examination and cultures,
Thoracentesis, Tuberculosis skin test [7].A chest x-ray usually does not show improvement from
treatment until weeks or months later. Outlook is excellent if pulmonary TB is diagnosed early
and effective treatment is started quickly. People are advised to seek medical treatment if they get
exposed to TB, develop symptoms of TB, symptoms continue despite treatment, or new symptoms
develop [4].

Left untreated, each person with infectious TB can spread the germs to about 10 to 15 people
every year [8]. Medications are the cornerstone of tuberculosis treatment. However, treating TB
takes much longer than treating other types of bacterial infections. With tuberculosis, the patient
must take antibiotics for at least six to nine months. The exact drugs and length of treatment
depend on the patient’s age, overall health, possible drug resistance, the form of TB and the
infection's location in the body [9]. The goal of treatment is to cure the infection with drugs that
fight the TB bacteria. Treatment of active pulmonary TB always involve a combination of many
drugs. All of the drugs are continued until laboratory tests show which medicines work best.
Commonly used drugs include: Isoniazid, Rifampin (Rifadin, Rimactane), Pyrazinamide and
Ethambutol (Myambutol). Other drugs that may be used to treat TB include: Amikacin,
Ethionamide, Moxifloxacin, Para-aminosalicylic acid and Strptomycin [7]. There is some
evidence that taking vitamin D during tuberculosis treatment enhances some of the effects of the
drugs [3].

A recent study suggests that a shorter term of treatment — three instead of nine months — with
combined medication may be effective in keeping latent TB from becoming active TB. With the
shorter course of treatment, people are more likely to take all their medications and the risk of side
effects is lessened. More study is needed to ascertain this recent finding. A TB patient may need to
take just one type of TB drug. Active tuberculosis, particularly if it is a drug-resistant strain, will
require several drugs at once [8].

Side effects of TB drugs are not common but can be serious when they do occur. All tuberculosis
medications can be highly toxic to the liver. Patients on such medications are advised to inform
their doctors immediately if they experience any of the following: nausea or vomiting, loss of
appetite, a yellowish skin color (i.e. jaundice), dark urine, a fever that lasts three or more days and
has no obvious cause [9]. Pulmonary TB can cause permanent lung damage if not treated early.
Other side effects of anti-TB drugs include: changes in vision, orange- or brown-colored tears and
urine, or rash. A vision test may be done before treatment so doctors can monitor any changes in
the health of the eyes [7].

Persons who have been recently infected with TB bacteria include: persons who have close

contacts with a person with infectious TB disease, persons who have immigrated from areas of the
world with high rates of TB infections , children less than 5 years of age who have a positive TB
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test, persons from groups with high rates of TB transmission (such as homeless persons, injection
drug users, and persons with HIV infection), and persons who work or reside with people who are
at high risk of TB in facilities or institutions such as hospitals, homeless shelters, correctional
facilities, nursing homes and residential homes for those with HIV [4].

Pulmonary TB is preventable, even in those who have been exposed to an infected person. Skin
testing for TB is used in high risk populations or in people who may have been exposed to TB,
such as health care workers. People who have been exposed to TB should be skin tested
immediately and have a follow-up test at a later date, if the first test is negative. A positive skin
test means there has been a contact with the TB bacteria. Such people need to consult a medical
doctor on how to prevent getting tuberculosis. Prompt treatment is extremely important
in preventing the spread of TB from those who have active TB disease to those who have never
been infected with TB. Some countries, such as Ghana, with a high risk of TB infections vaccinate
people with BCG vaccine to prevent TB. However, the effectiveness of this vaccine is limited and
it is not routinely used in some countries including the United States. People who have had BCG
may still be skin tested for TB. If the test results positive then it must be discussed with a medical
doctor [7].

From the study of the open literature no research work has been so far reported on the model of
epidemiology of tuberculosis in the Ashanti Region of Ghana. This paper therefore seeks to fill
the research gap using time series analysis. The main objective of this paper is to study the pattern
of tuberculosis infections in the Ashanti Region. The remaining part of this paper is organized as
follows. Section 1.1 surveys the research work relating to the subject of the paper. Section 2
discusses the data used, how they were obtained as well as the methods applied on them to obtain
the needed results. Section 3 deals with empirical analysis of the paper. Section 4 contains the
concluding remarks.

1.1 Literature Review

From the work of [10], despite the infectious agent that causes tuberculosis having been
discovered in 1882, many aspects of the natural history and transmission dynamics of TB were
still not fully understood. This was reflected in differences in the structures of mathematical
models of TB, which in turn produced differences in the predicted impacts of interventions.
Gaining a greater understanding of TB transmission dynamics required further empirical
laboratory and field work, mathematical modelling and interaction between them. Modelling
could be used to quantify uncertainty due to different gaps in their knowledge to help identify
research priorities. Fortunately, the present moment was an exciting time for TB epidemiology,
with rapid progress being made in applying new mathematical modelling techniques, new tools
for TB diagnosis and genetic analysis and a growing interest in developing more-effective public-
health interventions.

Reference [11] addresses the spread of tuberculosis through one-strain and two-strain models.
They first presented a basic model that incorporated fast and slow progression, effective
chemoprophylaxis and therapeutic treatment. The system exhibited the traditional behavior. They

proved that if the basic reproduction ratio R, = 1, then the disease-free equilibrium is globally

asymptotically stable on the nonnegative out-hunts. However, if R;>1 an endemic equilibrium
exists and is globally asymptotically stable. Based on the first model, the second model dealt with
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the problem of drug resistance as a competition between multiple types of strains of
mycobacterium tuberculosis: those that were sensitive to anti-tuberculosis drugs and those that
were resistant. Their objective was to characterize the role of multi-drug-resistant in the
transmission of tuberculosis. The coexistence and stability of the associated equilibria were
discussed.

According to [12], TB was a leading cause of infectious mortality. Although anti-biotic treatment
was available and there was vaccine, tuberculosis levels were rising in many areas of the world.
They used mathematical models to study tuberculosis in the past and had influenced public policy.
The spread of HIV and the emergence of drug-resistant TB strains motivated the use of
mathematical models today. Here, they reviewed and compared the mathematical models of
tuberculosis dynamics in the literature. They presented two models of their own: a spatial
stochastic individual-based model and a set of delay differential equations encapsulating the same
biological assumptions. They compared two different assumptions about partial immunity and
explored the effect of preventative treatments. They argued that seemingly subtle differences in
model assumptions could have significant effects on biological conclusions.

[13] on their part evaluated the efficacy of recommended tuberculosis infection control measures.
They used a deterministic mathematical model for airborne contagion. They examined the
percentage of purified protein derivative conversions under various exposure conditions,
environmental control strategies, and respiratory protective devices. They concluded that
environmental control cannot eliminate the risk for TB transmission during high-risk procedures.
However, respiratory protective devices, and particularly high-efficiency particulate air masks,
may provide nearly complete protection if used with air filtration or ultraviolet irradiation.
Nevertheless, the efficiency of those control measures decreased as the infectivity of the source
case increased. Therefore, administrative control measures were the most effective because they
substantially reduced the rate of infection.

Reference [14] studied the spread of tuberculosis through a two-patch epidemiological system
SE; -+ E,I which incorporated migrations from one patch to another just by susceptible individuals.
Their model was considered with bilinear incidence and migration between two patches, where
infected and infectious individuals cannot migrate from one patch to another due to medical
reasons. They discussed the existence and uniqueness of the associated endemic equilibria. They
used quadratic forms and Lyapunov functions to show that when the basic reproduction ratio is
less than one, the disease-free equilibrium (DFE) is globally asymptotically stable, and when it is
greater than one there exists in each case a unique endemic equilibrium which was globally
asymptotically stable. Numerical simulation results were provided to illustrate the theoretical
results.

Reference [15] formulated mathematical models to establish the conditions on the size of the area
occupied required minimizing and thereafter eradicating tuberculosis. Both numerical and
qualitative analyses of the model were done and the effect of variation in the area size and
recruitment rate on the different epidemiological groups was investigated. Their results of the
analysis showed that there exists a stable disease-free equilibrium point provided that the
characteristic area was greater than the product of the probability of survival from the latent stage
to the infectious stage and the number of latent infections produced by a typical infectious
individual during his/her mean infectious period. Their study recommended that the characteristic
area per individual should be at least 0.25 square kilometres in order to minimize the tuberculosis
incidence.
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Reference [16] reviewed a mathematical model of the dynamical behaviour of tuberculosis disease
in the Upper East Region of the Northern part of Ghana. The equilibrium points of the model
system were found and their stability was investigated. His model exhibited two equilibria,
namely, the disease-free equilibrium and the endemic equilibrium. He used stability theory and
computer simulation, and observed that population determine the infection rate of tuberculosis
hence the higher the population density, the greater the risk of instability of the disease-free
equilibrium.

The use of different mathematical tools to study biological processes is necessary to capture
effects occurring at different scales. They studied as an example the immune response to infection
with the bacteria Mycobacterium tuberculosis, the causative agent of tuberculosis. They showed
that the immune responses were both global as well as local in nature. They used four different
mathematical tools to explore both the global immune response as well as the more local one and
compared and contrasted results obtained using those methods. Applying a range of approaches
from continuous deterministic models to discrete stochastic ones allowed them to make
predictions and suggested hypotheses about the underlying biology that might otherwise go
unnoticed. The tools developed and applied were also applicable in other settings such as tumor
modeling [17].

The strengths and limitations of using homogeneous mixing and heterogeneous mixing epidemic
models were explored in the context of the transmission dynamics of tuberculosis in [18]. Their
focus was on three types of models: a standard incidence homogeneous mixing model, a non-
homogeneous mixing model that incorporates 'household' contacts, and an age-structured model.
The models were parameterized using demographic and epidemiological data and the patterns
generated from those models were compared. Furthermore, the effects of population growth,
stochasticity, clustering of contacts, and age structure on disease dynamics were explored. That
framework was used to assess the possible causes for the observed historical decline of
tuberculosis notifications.

The study looked at the estimation of the economic burden and household welfare impact of
tuberculosis (TB) in the Western Region of Ghana. Studies into the economic burden of TB in
Ghana have been limited. WHO‘s (2002a) guidelines on cost and cost effectiveness of TB
management were followed in the estimation of cost of TB from the patient/household and health
provider perspectives. Human capital method was applied in the cost estimation. Wells-Riley
model and multiple regression technique were employed in the estimation of the probability of
transmission within households and the household welfare impact of TB. Results established that
tuberculosis causes a significant deterioration in household income and welfare. The study also
found that TB imposes various catastrophic economic costs on affected households and utilize
considerable resources within the public health system. It is recommended that safety nets or
income insurance be establish for households affected by TB to help them cope with high
economic burden as well as helping patients fully complete treatment [19].

According to [20], tuberculosis (TB) is a serious public health issue in developing countries. Early
prediction of TB epidemic is very important for its control and intervention. They aimed to
develop an appropriate model for predicting TB epidemics and analyze its seasonality in China.
Data of monthly TB incidence cases from January 2005 to December 2011 were obtained from the
Ministry of Health, China. They used a seasonal autoregressive integrated moving average
(SARIMA) model and a hybrid model which combined the SARIMA model and a generalized
regression neural network model to fit the collected data from 2005 to 2010. Simulation
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performance parameters of mean square error (MSE), mean absolute error (MAE) and mean
absolute percentage error (MAPE) were used to compare the goodness-of-fit between these two
models. Data from 2011 TB incidence data was used to validate the chosen model. From their
results, although both two models could reasonably forecast the incidence of TB, the hybrid model
demonstrated better goodness-of-fit than the SARIMA model. For the hybrid model, the MSE,
MAE and MAPE were 38969150, 3406.593 and 0.030, respectively. For the SARIMA model, the
corresponding figures were 161835310, 8781.971 and 0.076, respectively. The seasonal trend of
TB incidence is predicted to have lower monthly incidence in January and February and higher
incidence from March to June. They concluded that the hybrid model showed better TB incidence
forecasting than the SARIMA model. There is an obvious seasonal trend of TB incidence in China
that differed from other countries.

2. Materials and Methods

The data used for the modeling and analysis was obtained from the Ministry of Health in the
Ashanti Region of Ghana. It consists of monthly tuberculosis cases from various hospitals in the
Ashanti Region for the period of January 2001 to March 2013.

Ashanti region is used as our case study area since the region is a cosmopolitan region in Ghana.
All sorts of people are living in the region. The region is the third largest of 10 administrative
regions in Ghana, occupying a total land surface of 24,389 square kilometers or 10.2 per cent of
the total land area of Ghana. In terms of population, however, it is the most populated region with
a population of 4,780,380 in 2010 population and housing census (PHC), accounting for 19.4 per
cent of Ghana’s total population; however, its density (148.1 per square km) is lower than those of
the Greater Accra (895.5/km”) and Central (162.2/km?) Region [21]. The region is centrally
located in the middle belt of Ghana. It lies between longitudes 0.15W and 2.25W, and latitudes
5.50N and 7.46N. The region shares boundaries with four of the ten political regions, Brong-
Ahafo Region in the north, Eastern region in the east, Central region in the south and Western
region in the south west. The region is divided into 30 districts, each headed by a district chief
executive [22]. Majority of the region’s population are Ghanaians by birth (87.3%) with about five
per cent naturalized Ghanaians. A smaller proportion (5.8%) of the population originate from
outside Ghana, made up of 3.7 per cent mainly from the five English-speaking countries of
ECOWAS and 2.1 per cent from other African countries. The non-African population living in the
region is 1.8 per cent of the total population. Akans are the predominant ethnic group in the
region, representing 77.9% of Ghanaians by birth. A high proportion (78.9%) of the Akan
population is Asante. The non-Akan population in the region comprises the Mole- Dagbon (9.0%),
the Ewe (3.2%), the Grusi (2.4%), the Mande-Busanga (1.8%) and the Ga- Dangme (1.4%). The
other smaller ethnic groups form about 1.3 per cent of the population of the region [23].

The basis of the Box-Jenkins approach to modeling time series is summarized below and consists
of three phases: identification, estimation and testing, and application [24].
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2.1 Identification Stage

In this identification stage, we transform the collected data to be used for the modeling into
stationary data with stabilized variance. For non-seasonal data, first differencing is usually
sufficient to attain stationarity. The first-order difference of a time series is defined as

VX, =X, -X_,, (1)

where X, is a random variable at time 7. Another very important diagnostic tool for examining

interdependence of data is the sample autocorrelation functions. In this section, we examine the
Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) of the data to
identify potential models.

The autocorrelation function (ACF), p, ¢, is defined as

Cov(X,,X,)
Var(XVar(X,)’

Prs = COW'(Xt,XS) = Vit se {0,£1,+2,£3, ...}, )

where Cov(X,, X )= E[(X, —u, )X, —u)]=E(X,, X )= 1, , 1, is the expected
value of the stochastic process ( X,) at time .

The sample autocorrelation function, 7, , at lag k is given by equation (3), where X is the grand

mean.

DX, = X)X = X)
r, = 1=kl Jfork=1,2,3,.... (3)

i(Xt _})2
t=1

For a variety of reasons, this has become the standard definition for the sample autocorrelation

function. A plot of 7, versus lag k is often called a correlogram [25].

2.2 Estimation and Testing Stage

2.2.1 The Estimation Phase

We now proceed with the general development of autoregressive moving average (ARMA), and
mixed autoregressive moving average (ARMA) models for the stationary time series obtained in
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Section 2.1. A time series { X,; =0, +1, 42, 43, ...}is ARMA (p, g) if it is stationary and fulfills
equation (4).

X, =¢X,  +9X, ,+. 49X, ,+00, +0,0 ,+.+00, , +0,. 4)

¢p =0, Hq # 0 and ,Ow2 > (. The parameters pand gare called the autoregressive and the

moving average orders, respectively. In the situation in which X, has a non-zero mean £, we set
a=pu(l—¢ — ¢, —...— ¢,) and use the alternative model
X,=a+¢X,  +$X, ,+.+¢,X, ,+00 +0,0 ,+.+00 , +o, (3)

where{ @, ; =0, =1, £2, . . .} is a Gaussian white noise sequence and ¢ is the intercept [26]. An
example of an ARMA (p, ¢) model is the ARMA (1, 1), which is defined as equation (6).

X, =a+¢9X, +00,_ +o,. (6)

The ARMA (1, 1) model is stationary if —1 <@, <1 and it is invertible if —1< @, <1. In an
ARMA (1, 1) model both ACF and the PACEF trail off to zero.

2.2.2 Testing stage

While the approximate linear decay of the sample ACF is often taken as a symptom that the
underlying time series is nonstationary and requires differencing, it is also useful to quantify the
evidence of non-stationarity in the data-generating mechanism. This can be done via hypothesis
testing.

Consider the model X, =@ X, | +7, fort=1,2,3, ...,where { ¥, } is a stationary process. The

process { X, } is non-stationary if the coefficient ¢ = 1, but it is stationary if | ¢, |[< 1. Thus, the

null hypothesis corresponds to the case where the AR characteristic polynomial has a unit root and
the alternate hypothesis states that it has no unit roots [26].

2.2.2.1 Augmented dickey-fuller (ADF) test

The hypothesis ~ H,: X, is non—stationary against the alternate hypothesis H,: X, is

t t
stationary can be tested in the regression equation (7).
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V4
AX, =, +at+ B X, + Z yAX, .+, (7)

i=1

Accept H, if P—value> 0.05, else accept H, .
2.2.2.2 Kwiatkowski-phillips-schmidt-shin (KPSS) test

An alternative approach to the ADF test is the KPSS test. A hypotheses of H: X, is level or

trend stationary is tested against /7, : X, is non- stationary in the regression equation (8).

X =a,+pt+u, 8)

where a random walk, &, = &, , + &, is allowed. We accept H , if P—value > 0.05, else we

accept .

2.2.2.3 Testing the model for adequacy (portmanteau test)

After identifying an appropriate model for a time series data, it is very important to check that the
model is adequate. Reference [27] provides a modified portmanteau test statistic for checking the
randomness of the error terms. Their statistic is given by equation (9).

Q*zn(n+2)x2(nr"_k]. 9)

k=1

Q* is approximately distributed as a ¥ * with h— p —q degrees of freedom, where n is the
length of the time series, 4 is the first 4 autocorrelations being checked, p is the order of the auto-
regressive process, g is the order of the moving average process, and 7, is the estimated

autocorrelation coefficient of the & residual term. If the calculated value of Q* is greater than
;(2 for h— p — g degrees of freedom, then the model is considered inadequate and the model is

adequate if Q* calculated is less than ;{2 for h — p —¢q degrees of freedom. If the model is

tested inadequate, then the forecaster should select an alternative model and test for the adequacy
of the model [24].

2.3 Application: Selecting Best Model Using Suitable Criterion

A number of other approaches to model specification have been proposed since Box and Jenkins’
seminal work. One of the most studied is Akaike’s Information Criterion (AIC). This criterion
advocates to selecting the model that minimizes AIC [25]. The AIC is equal to twice the number
of parameters in the model minus twice the logarithm of the likelihood function. Mathematically,
AIC is calculated as
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AIC(p,q) = 2k — 2 log (maximum likelihood), (10)

where k= p + ¢ + 1 if the model contains an intercept or constant term, and k = p + ¢ otherwise.

Given two or more competing models, the one with the smallest AIC value is deemed more
appropriate. The AIC is a biased estimator, and the bias can be appreciable for large parameter per
data ratios. Reference [28] showed that the bias can be approximately eliminated by adding
another non-stochastic penalty term to the AIC, resulting in the corrected AIC, denoted by AICc
and defined by equation (11).

AICe = AIC + 2K+ Dk +2) (a1
n—-k-2

n is the sample size and £ is the total number of parameters excluding the noise variance.

Another approach to determining the ARMA orders is to select a model that minimizes the
Schwarz Bayesian Information Criterion (BIC). It is defined mathematically by equation (12).

BIC(p,q) = k xlog(n) — 2 x log (maximum likelihood). (12)

If the true process follows an ARMA (p, ¢) model, then it is known that the orders specified by
minimizing the BIC are consistent; that is, they approach the true orders as the sample size
increases. However, if the true process is not a finite-order ARMA process, then minimizing AIC
among an increasingly large class of ARMA models enjoys the appealing property that it will lead
to an optimal ARMA model that is closest to the true process among the class of models under
study [25].

We now turn to another fundamental concern, i.e. how to measure the suitability of a particular
forecasting method for a given data set. In most forecasting situations, accuracy is treated as the
overriding criterion for selecting a forecasting method. In many instances, the word “accuracy”
refers to “goodness of fit,” which in turn refers to how the forecasting model is able to reproduce
the data that are already known. To the consumer of forecasts, it is the accuracy of the future
forecast that is most important [24]. Among the common used to measure estimation accuracy are
the mean absolute error (MAE) and the mean squared error (MSE).

The MAE and the MSE are defined respectively as

MAE :lzn:|e,|. (13)
no
MSEle”:ef. (14)

t=1
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X, is the actual observation of the process at time #, [, is the forecast value of the process at the

same time, e, = X, — F, is the error term, and  is the number values of the process estimated.

3. Data Analysis and Results

This section discusses the analysis and modeling of the data collected on tuberculosis cases in the
Ashanti Region of Ghana. Here, we applied the R Statistical Package in modeling the time series.
That is, all the plots and numerical output displayed in this paper have been produced with the R
software. Most of the numerical outputs have been edited for additional clarity or for simplicity.
Actual tuberculosis data drawn from various hospitals in the Ashanti Region of Ghana are used
throughout in this paper to illustrate the methodology presented in Section 2.

3.1 Time Plot of Prevalence of Tuberculosis (TB) in the Ashanti Region of
Ghana

In general, the trend in TB prevalence in the Ashanti Region of Ghana seems to be irregular. The
annual TB time plot in Fig. 1 does not exhibit seasonal variation. The green line shows the mean
of the series. Most of the data points are very close to the mean. This indicates that there is a clear
case of stationarity in the mean. It follows that the TB series is stationary in the mean since the
data fluctuate around a constant mean, independent of time, and the variance of the fluctuation
remains essentially constant over time. There was not any seasonal behavior in the time plot, and
hence the TB data looks to be approximately stable for further investigations.

;|
§ /\AA AA M nAAI\AA!\ i A/\A/
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Time(Years)

Fig. 1. TB cases in the Ashanti-Region of Ghana from January 2001 to March 2013
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3.1.1 Stationarity checks using the ACF and PACF

Fig. 2 depicts the autocorrelation function (ACF) and the partial autocorrelation function (PACF)
of the TB data. From Fig. 2 (i) the spikes from 2 to 20 autocorrelation do not exceed two standard
errors above zero (they are significantly near to zero). This shows that there is a stationarity in the
TB data. Fig. 2 (ii) exhibits the partial autocorrelation function (PACF) of the TB data. At lag zero
the PACEF is far away from unity (1) which confirms that the tuberculosis time series is stationary.

CASES Series Data1
3 L ‘ ‘ ‘ ‘ ‘ ‘ T ‘ l ‘ ‘ E g ‘ ‘ ‘ | ‘ ‘ ‘ ‘ ‘ ‘ |
0‘5 1‘.0 1‘5 0‘5 1‘0 1‘5
Lag A
Lag
Fig. 2 (i) Fig. 2 (ii)
Fig. 2. The Autocorrelation Function and Partial Auto-Correlation Function of TB
prevalence

3.1.2 Stationarity checks using the augmented Dickey-Fuller (ADF) Test and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test

The Augmented Dickey-Fuller (ADF) Test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test
for tuberculosis data are discussed in Table 1. The table shows both ADF and KPSS test results.
The P -value indicates the stationarity or otherwise of the time series under study. The time series
is stationary if and only if the P-value for the ADF test falls below 0.05 (i.e. 5% significant level)
and that of KPSS exceeds 0.05. As these conditions are fulfilled, we can conclude that the original
tuberculosis (TB) data of the Ashanti Region of Ghana is stationary. The two tests confirmed that
there was stationarity in the original TB data and hence mean stationarity is achieved.

Table 1. ADF and KPSS Tests

ADF Test

Dickey-Fuller Lag Order P-value
-5.1017 5 0.01

KPSS Test

KPSS Level Lag Parameter P -value

0.2961 2 0.1
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3.2 Selecting Competing Models Using ACF and PACF of TB Cases

The first part of Fig. 2 shows the sample ACF of the TB cases. Except for marginal significance at
spike 1, the model seems to have captured the essence of the dependence in the series. Inspecting
the sample ACF, we see that PACF is tailing off and the ACF is cutting off at spike 1 as shown in
Fig. 2 (i). This suggests that the TB data follows an MA (1) model.

Fig. 2 (ii) shows the sample PACF of the TB cases in the Ashanti Region of Ghana at different
lags. Inspecting the sample PACF, we see that the ACF is tailing off and the PACF is cutting off
at spike 1. Except for marginal significance at spike 1, the model seems to have captured the
essence of the dependence in the series. This suggests an AR (1) for the TB cases.

As a preliminary analysis, we will fit both models. It follows that, in both the ACF and the PACF
of the tuberculosis (TB) data in Fig. 2, the following models were suggested:

1. ARMA (0, 1) or MA (1);
2. ARMA (1, 0) or AR (1)
3. ARMA (1, 1).
3.3 Estimation of Tentative Models

The estimations of the three selected tentative models with non-zero mean are discussed below.

3.3.1 Parameter estimate and diagnostics of ARMA (0, 1) model

Table 2 depicts the parameter estimate for ARMA (0, 1) with non-zero mean. The coefficient of
the estimated MA(1) parameter is within the causality condition bounds since its absolute ¢ value
is greater than 2 as shown in Table 2. From Table 2, the estimated ARMA (0, 1) model can be
written as shown in equation (15)

X, =0219%w, | +71.5024. (15)

Table 2. Parameter Estimate for ARMA (0, 1) with Non-zero Mean

Coefficient Estimate Standard Error |t — value| Intercept
mal 0.2194 0.0735 2.9850 71.5757
AIC AICe BIC Constant

1326.41 1326.69 1333.37 -0.0733

Results from Table 3 showed that the model’s residuals were non - significant with Ljung Box test
statistic of 14.8703 and a P-value of 0.7838. Hence the model was adequate for forecasting.

Table 3. Box-Ljung test of ARMA (0, 1) with non- zero mean

X-Squared Degrees of Freedom (df) P -value

14.8703 20 0.7838
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3.3.2 Parameter estimate and diagnostics of ARMA (1, 0) model

The coefficient of the estimated AR (1) parameter is within the causality condition bounds since
its absolute #- value is greater than 2 as shown in Table 4. From Table 4 the estimated ARMA (1,
0) model can be written as

X,=0.2557 X, , +71.6667 . (16)

Table 4. Parameter estimate for ARMA (1, 0) with non-zero mean

Coefficient Estimate Standard error |t — value| Intercept
arl 0.2557 0.0802 3.1883 71.7416

AIC AICc BIC Constant
1324.95 1325.23 1336.91 -0.0749

Results from Table 5 shows that the model’s residuals were non-significant with Ljung Box test
statistic of 15.2002 and a P-value of 0.7648. Hence the model was adequate for forecasting.

Table 5. Box-Ljung test and Forecasts from ARMA (1, 0) with non- zero mean

X-Squared Degrees of freedom (df) P -value

15.2002 20 0.7648

3.3.3 Parameter estimate and diagnostics of ARMA (1, 1) model

From Table 6 the coefficients of the estimated ARMA (1, 1) parameters are outside the causality
and invertibility condition bounds since their absolute #-values are less than 2. From Table 6 the
estimated ARMA (1, 1) model can be written as shown in equation (17).

X, =0.4184X,, —0.1716w,_, +71.8699. (17)

Table 6. Parameter estimate for ARMA (1, 0) with non-zero mean

Coefficient Estimate Standard error |t — value| Intercept
arl 0.4184 0.2537 1.6492 71.9467
mal -0.1716 0.2687 0.6386
AIC AlICc BIC Constant
1326.57 1326.99 1341.52 -0.0768

Results from Table 7 showed that the model’s residuals were non - significant with Ljung Box test
statistic of 15.2481 and a P-value of 0.7620. Thus the model was adequate for forecasting.

Table 7. Box-Ljung test and Forecasts from ARMA (1, 1) with non- zero mean

X-Squared Degrees of Freedom (df) P -value

15.2481 20 0.7620
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3.4 Forecasting from ARMA (1, 0), the Best Model

From Fig. 3, the yellow region depicts the 95% confidence interval, the red region is the 85%
confidence interval and the blue line is the forecasting points. The model was used to forecast two
years ahead and showed that the tuberculosis prevalence in the Ashanti Region of Ghana will be
stable from April 2013 to April 2015 as shown in the blue line.

o

2 pu—

o

‘9 —

o

o

S T T T T T T T

2002 2004 2006 2008 2010 2012 2014
Fig. 3. Forecasts from ARMA (1, 0) with non-zero mean
3.5 The Error Metrics

Forecasting accuracy based on the Mean Absolute Error (MAE) of the forecasted values was
checked for each fitted model as shown in Table 8. It highly favored the forecasted value of
ARMA (1, 0), the best selected model. This means that, the ARMA (1, 0) forecast error of
16.3171 out-performed all the forecast errors so far as the MAE is concerned. Hence ARMA (1, 0)
was confirmed to be the best model.

Similarly, the forecasting accuracy based on the Mean Squared Error (MSE) of the forecasted
values favored ARMA (1, 1), one of the competing selected models. This means that, the ARMA
(1, 1) forecast error of 460.1114 out-performed all the forecast errors so far as the MSE is
concerned.

Table 8. The Mean Absolute Error (MAE) and the Mean Squared Error (MSE)

(i) Mean Absolute Error (MAE) (ii) Mean Squared Error (MSE)
ARMA(0, 1) 16.3394 ARMA(0,1) 465.9801
ARMA(1, 0) 16.3171 ARMA(1, 0) 461.3148
ARMA(1, 1) 16.3172 ARMA(1, 1) 460.1114
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4. Conclusion and Recommendations

Results from Table 9 compares three of the best models tested for the TB data. It can be observed
that ARMA (1, 0) shows the lowest AIC value of 1324.96. It is thus the best model for the TB
data so far as the AIC was concerned.

Table 9. Summary of Diagnostics Test

MODEL AIC AlICc

ARMA (1, 0) 1324.96 1325.23
ARMA (0, 1) 1326.35 1326.69
ARMA (1, 1) 1326.57 1326.99

Hence the best model for the TB data is X, =0.2557 X, + 71.6667 . However, the

forecasting accuracy based on the MAE for ARMA (1, 0), the best obtained model, was the lowest
and its forecast error was calculated as 16.3171. In conclusion then, the research study reported in
this article has found that tuberculosis data in the Ashanti Region of Ghana is best modeled with
ARMA (1, 0) or AR(1). The study again found out that tuberculosis prevalence in the Ashanti
Region is expected to be stable from April, 2013 to April 2015.

This model did not consider mass vaccination as one of the methods to prevent the prevalence of
tuberculosis in the region. The results of this paper can be used as a tool to facilitate the
introduction of tuberculosis vaccine and improve tuberculosis vaccination in the country as a
whole. The results of this paper showed that it is not always true that the best selected model gives
the best results so far as the mean squared error (MSE) is concerned. From above discussions, we
conclude that the tuberculosis data from the Ashanti Region of Ghana spanning January 2001 to
March 2013 depicts a stochastic time series with a linear model, i.e. ARMA (1,0) or AR (1).
Thus, for any chance of eradicating the disease, it is recommended that Ghana Health Service may
not relent on its mass tuberculosis vaccination campaign in the region.
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