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ABSTRACT 
 

Our focus in this article is the derivation; analysis and implementation of a new modified 
implicit hybrid block method for the direct solution of initial value problems of fourth order 
ordinary differential equations. In the derivation of the method, we adopted the approach 
of collocation approximation to obtain the main scheme with continuous coefficients. From 
the main scheme, additional schemes were developed. The implementation strategy of 
the new method is by combining the main scheme and the additional schemes as 
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simultaneous integrator to initial value problem of fourth order ordinary differential 
equations. As required of any numerical method, the properties analysis of the block was 
done and the result showed that it is consistent, convergent, zero stable and absolutely 
stable. We then test our method with numerical examples solved using existing method 
and were found to give better results. 
 

 
Keywords: Interpolation; continuous coefficients; block method; numerical integration; fourth 

order ordinary differential equations. 
 

1. INTRODUCTION 
 
Some empirical problems and physical. Phenomena in science and engineering, such as 
mechanical systems without dissipation, celestial mechanics, control theory, computer aided 
designs when modeled result to higher order ordinary differential equations of the form: 
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Conventionally, to solve (1) numerically, we first reduce it to system of first order ordinary 
differential equations and then apply any other existing first order method to solve it. Many 
literature abounds on this [1,2]. The drawback of this method is that it is time consuming, 
cumbersome to solve, and take much computer space. To circumvent these draw backs, 
many researchers have solved (1) directly, they include: [3,4,5,6] who developed block 
methods for numerical solution of fourth order ordinary differential equations. The works of 
[5,6] serve as improvement on the work of [4] who developed Linear multistep method for 
the solution of fourth order ordinary differential equations whose implementation is Predictor 
– Corrector mode.  
 
We are motivated to advance the course of research work by continuing with the proposition 
of block method which have been shown to eliminate the drawbacks of Predictor corrector 
method as discussed in [5,7,8,9,10,11] in their works have proposed single Step hybrid 
methods for the direct numerical solution of initial value problems of second order and third 
order Ordinary differential equations respectively. In all Cases, their methods of 
implementation are block mode with the proposed methods being efficient, adequate and 
suitable towards catering for the class of problems for which they were designed.  
 
Consequently, our motivation in this work is the success story of the adoption of single step 
method to solving higher order ordinary differential equations. Thus, in this work, we are 
proposing a single step method for the direct numerical solution of fourth order ordinary 
differential equations, which eliminates the use of predictors by providing sufficiently 
accurate simultaneous difference equations from a single continuous formula and its 
derivatives. 
 
According to [12], the general block formula is given by:  
 

    ( ) ( )mnnm ybFhydfheyY µµ ++=                                                                          (2) 
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Where e is ss ×  vector, d is r - vector and b is rr ×  vector, s  is the interpolation points 

and r is the collection points. F is a k – vector whose 
th

J  entry is ),( , jnjnjn ytff +++ = µ is 

the order of the differential equation.  
 
Given a predictor equation in the form: 
 

( ).)0(

nnm ydfheyY µ+=                                                                                 (3) 

 
By Putting (3) in (2) we have: 
 

( ) ( ).nnnnm dfyheybFhydfheyY µµµ +++=                                                            (4) 

 
Equation (4) is called a self starting block-predictor-corrector method because the prediction 
equation is gotten directly from the block formula [13,4]. 
 
Consequently, our focus in this paper is the proposition of an improved implicit continuous 
hybrid algorithm for the solution of initial value problems of fourth order ordinary differential 
equations. 
 

2. DERIVATION OF THE METHODS 
 
We take our basis function to be a power series of the form: 
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The third derivative of (5) gives: 
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By putting (6) into (1) we have the differential system: 
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Where ja
 

the parameters to be determined are, while r+s denotes the number of 

collocation and interpolation points. By collocating (7) at the mesh points

1, 0( )1
5n jx x j+= = , and interpolating (5) at jnxx += , 31 2 4, , ,

5 5 5 5
j = yields a 

system of equations: 
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By putting these system of equations in matrix form and then solved to obtain the values of 

Parameters ja ’s , j = 0, 1
5

, . Which when substituted in (5), yields, after some 

manipulation, a hybrid linear method with continuous coefficients of the form: 
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The co efficient of )(xjα and jβ
 
are: 
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2.1 Derivation of the Block  
 
The general block formula proposed by Awoyemi et al. [12], in the Normalized form is given 
by: 
 

       ( ) ( )mnnm ybFhydfheyYA λµλµ −− ++=)0(
                                                          (12) 

 

  By evaluating (10) at 1=t ; the first, second and the third derivative at 
1

1, 0( )1
5nx x i+= =  

and substituting into (12) gives its coefficients as: 
 

T

d

















=

288

19

255

14

800

51

75600

4704

7200

475

2016

122

7875

376

28000

984

252000

5680

252000

2462
8064

233

39375

712

560000

5481

78750

317

5040000

3229

362880

3346

450000

40448

14000000

25488

8859375

4264

1134000000

49126

 
 

T

e

























=

111111
5

4

5

3

5

2

5

1

2

1

25

8

50

9

25

2

50

1

6

1

375

32

250

9

375

4

750

1

10000111111
5

4

5

3

5

2

5

1

2

1

25

8

50

9

25

2

50

1

1000000000111111
5

4

5

3

5

2

5

1
00000000000000011111

 

 

2020
0 ×=A  identity matrix 

 














−−−−−−−

−−−−−−−

=

1290240

2560

1290240

1458

1290240

608

1290240

94

3870720

2560

3440640

891

7741440

512

30965760

131
1290240

24576

1290240

8100

1290240

3328

1290240

516

3870720

16384

3440640

4860

7741440

2816

30965760

716
1290240

5015

1290240

9877

1290240

8809

1290240

2365

3870720

15675

3440640

11492

7741440

10107

30965760

8472
1290240

139264

1290240

67068

1290240

21248

1290240

2140

3870720

114688

3440640

34668

7741440

15104

30965760

2780

B
 

 
T














−−−−−−

−−−

−

90

7

320

3

6840

18

2880

19
0

2560

3

322560

672

1958400

1792
90

32

320

42

6840

76

2880

106

90

8

2560

20

322560

3584

1958400

9860
90

12

320

72

6840

456

2880

264

90

6

2560

18

322560

6735

1958400

23970
90

32

320

102

6840

2356

2880

264

90

24

2560

156

322560

32256

1958400

45900

 

 



 
 
 
 

Kayode et al.; JSRR, Article no. JSRR.2014.21.007 
 
 

2797 
 

3. ANALYSIS OF THE PROPERTIES OF THE BLOCK 
 
In this section we carry out the analysis of the Basic properties of the new method. 
 

3.1 Order of the Method 
 
The linear operator of the block (12) is defined as:  
 

( ){ } ( ) ( )mmmm ybFhydfheyYhxyL λµλµ −− ++−=:                                           (13) 

 

By expanding ( )ihxy n +  and ( )jhxf n + in Taylor series, (12) becomes: 
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The block (11) and associated linear operator are said to have order p if  
 

.0,0...
2110

≠==== ++ pp CCCC  

 

The term 
2+pC  is called the error constant and implies that the local truncation error is given  

by:  
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Hence the block (12) has order 8 with error constant: 
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3.2 Zero Stability of the Block 
 

The block (11) is said to be Zero stable if the roots Nz s ,...,2,1=  of the characteristic 

polynomial ( ) ( ),det EzAz −=ρ  satisfies 1≤z and the root 1=z has multiplicity not 

exceeding the order of the differential equation. Moreover as ( ) ( ),1,0 −=→ − λρ µµ r
zzh  
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Where µ  is the order of the differential equation, for the block (11), 4,16 == µr  

 

( ) ( )
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Hence our method is Zero stable. 
 

3.3 Convergence 
 
The necessary and sufficient condition for a numerical method to be convergent is for it to 

be Zero stable and has order 1≥p , Since our method has been shown to be zero stable 

and has order 8, it satisfied the above condition, thus our method is convergent. 
 

4. NUMERICAL EXPERIMENTS 
 
To test the accuracy, workability and suitability of the method, we adopted our method to 
solving some initial value problems of fourth order ordinary differential equations. 
 
Test problem 1. 
 
We consider a non linear fourth order problem: 
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Whose exact solution is given by: .)(
2 x

exxy +=  The result is as shown in Table 1. 

 
Table 1. Showing results for problem 1 

 

XVAL ERC NRC ERR 

0.103125 1.119264744787591900 1.119264744787634518 4.261834E-14 
0.206250 1.271599493198048300 1.271599493198779782 7.314820E-13 
0.306250 1.452110907065012200 1.452110907066637521 1.625321E-12 
0.406250 1.666216862500120800 1.666216862506568972 6.568972E -12 
0.506250 1.915347109920913400 1.915347109923762547 2.849147E -12 
0.603125 2.201081767908965600 2.201081767913196057 4.231457E -12 
0.703125 2.514440293337009000 2.514440293349477520 1.246852E -11 
0.803125 2.877516387746618300 2.877516387798079728 5.146142E - 11 
0.903125 3.282936158805117400 3.282936158837654230 3.765423E - 11 
1.003125 3.733049511495201100 3.733049511556738124 7.218014E - 11 

 
Test problem 2. 
 
We consider special fourth order problem: 
 

( ) ( ) ( ) ( ) 1.0,00,00,10,00; ==′′′=′′=′== hyyyyxy
iv
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Whose exact solution is:  ( ) x
x

xy +=
120

5

 

 
Our method was used to solve the problem and result compared with [14].  The result is as 
shown in Table 2. 
 

Table 2. Showing results for problem 2 
 

XVAL ERC NRC ERR ERR  in [14] 

0.1 0.100000083333334000 0.10000008333351720 1.832E-13 7.000E- 10 
0.2 0.200002666666666900 0.20000266667150250 4.835E-12 8.999E -10 
0.3 0.300020250000000004 0.30002025000721480 7.214E -12 2.999E- 09 
0.4 0.400008533333333333 0.40000853340160457 6.832E -11 5.100E- 09 
0.5 0.500260416666666665 0.50026041674083458 7.416E -11 7.799E- 09 
0.6 0.600648000000000007 0.60064800002714565 2.714E -11 1.180E -08 
0.7 0.701400583333333344 0.70140058361478378 2.815E -10 1.240E- 08 
0.8 0.802730666666666670 0.80273066700848838 3.412E -10 1.410E -08 
0.9 0.904920750000000005 0.90492075019356814 1.936E -10 1.880E- 08 
1.0 1.008333333333333000 1.00833333361984509 2.865E - 10 2.600E -08 

 

4.1 Numerical Results 
 
We make use of the following Notations in the table of results: 
 

XVAL: Value of the independent variable where numerical value is taken. 
ERC: Exact result at XVAL 
NRC: Our Numerical result at XVAL 
ERR: Error of our result at XVAL.  

 

5. CONCLUSION 
 
In this paper, we have proposed a modified Implicit Hybrid Block algorithm for the numerical 
solution of initial value problems of fourth order ordinary differential equations. For better 
performance of the method, step size is chosen within the stability interval. The results of 
our new method when compared with the block method proposed by [14] showed that our 
method is more accurate. 
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