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Abstract
Aims/ objectives: Hayman [1] proposed to study the meromorphic solutions of nonlinear differential
equations of the form:

ff ′′ − (f ′)2 = k0 + k1f + k2f
′ + k3f

′′,

where kj (j = 0, 1, 2, 3) are constants. In this note, by using a new method, we give a unified and
simplified proof for these known results.
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1 Introduction and Main Results
In this paper, we shall adopt the standard notations in Nevanlinna’s value distribution theory of
meromorphic functions. For example, the characteristic function T (r, f), the counting function of
the poles N(r, f), and the proximity function m(r, f) (see, e.g., [2], [3] and [4]).

The behavior of meromorphic solutions of differential equations has been the subject of much
study. Research has concentrated on the value distribution of meromorphic solutions and their rates
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of growth. The purpose of the present paper is to show that a thorough search will yield a list of
all meromorphic solutions of a multi-parameter ordinary differential equation introduced by Hayman.
Hayman [1] proposed to study the meromorphic solutions of nonlinear differential equations of the
form:

ff ′′ − (f ′)2 = k0 + k1f + k2f
′ + k3f

′′, (1.1)

where kj (j = 0, 1, 2, 3) are constants. By letting ω = f − k3, the differential equation (1.1) can be
rewritten as

ωω′′ − (ω′)2 = αω + βω′ + γ, (1.2)

where α, β, γ are constants.
The major result concerning the order of growth of meromorphic solutions of first-order differential

equations is the following theorem due to Gol’dberg [5]. A generalization of Gol’dberg’s result to
second-order algebraic equations has been conjectured by Bank [6]. Steinmetz [7] proved related
results for any second-order polynomial equation which is homogeneous in its dependent variable
and its derivatives. Chiang and Halburd [8] studied the Hayman’s equation, and they obtain the
following results.

Theorem A If not both α and γ are zeros and β 6= 0, then the meromorphic solutions of (1.2) are

ω(z) = c1 exp(
αz

a∓
)− γ

α
, if α 6= 0,

and
ω(z) = c1 + a±z, if α = 0,

where c1 is a constant, and a± =
−β±
√
β2−4γ

2
.

Theorem B If β = 0, then the general solution of (1.2) is given by

ω(z) =


c1 exp(±i αz√γ )−

γ
α

, if α 6= 0;

c1 ± i
√
γz , if α = 0;

1
c21
[α+

√
α2 + γc21 cosh(c1z + c2)] , where c1 6= 0;

−α
2
z2 + c2αz − γ+c22α

2

2α
, if α 6= 0,

where c1, c2 are constants.
Theorem C If α = γ = 0, then the general solution of (1.2) is given by

ω(z) =


c1e

c2z + β
c2

,

−βz + c1 ,
0 ,

where c1, c2 are constants.
However, their proofs are complicated. In this note, by using a new method, we give a unified

and simplified proof for these known results. Specifically, our main results can be stated as follows:
Theorem 1.1 If γ 6= 0, consider the solutions of (1.2), we would have

ω(z) =

{
c exp( αz

a±
)− γ

α
, α 6= 0;

a±z + c , α = 0,

where c is a constant, and a± =
−β±
√
β2−4γ

2
.

Theorem 1.2 If γ = 0, consider the solutions of (1.2), we would have
(1) If αβ 6= 0, then ω(z) = ce

−α
β
z
, here c is a constant;

(2) If α = 0, then

ω(z) =


c1e

c2z + β
c2

,

−βz + c1, ,
c1 ,
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where c1, c2 are constants.
(3) If β = 0, then

ω(z) =

{
c1e
√
Az + c2e

−
√
Az − α

A
, A 6= 0;

−α
2
z2 + c1z + c2 , A = 0,

where c1, c2 are constants such that c21 + 2αc2 = 0 if A = 0 or 4c1c2A2 = α2 if A 6= 0.

2 Lemmas and Proofs of Theorems
The following lemma is crucial to the proof of our theorems.

Lemma 2.1 [3]. Let f be a meromorphic solution of an algebraic equation

P (z, f, f ′, · · · , f (n)) = 0, (2.1)

where P is a polynomial in f, f ′, · · · , f (n) with meromorphic coefficients small with respect to f. If a
complex constant c does not satisfy equation (2.1), then

m(r,
1

f − c ) = S(r, f).

In order to prove the results, we also need the following lemma.

Lemma 2.2 [4] . Let h be a non-constant entire function, and f = eh, then

T (r, h) = o(T (r, f)), T (r, h′) = S(r, f).

Proof of Theorem 1.1.

Since γ 6= 0, then (1.2) and Lemma 2.1 imply

m(r,
1

ω
) = S(r, ω). (2.2)

By the Nevanlinna’s first fundamental theorem and (2.2), we get

N(r,
1

ω
) = T (r, ω) + S(r, ω),

which, with (1.2), gives

N1)(r,
1

ω
) = T (r, ω) + S(r, ω), (2.3)

where N1)(r,
1
ω
) denotes the counting function corresponding to simple zeros of ω.

Let ω(z0) = 0, then z0 is a zero of (ω′)2 + βω′ + γ, and thus

(ω′(z0)− a+)(ω′(z0)− a−) = 0

with a+ =
−β+
√
β2−4γ

2
, a− =

−β−
√
β2−4γ

2
.

First, we assume that ω′(z0)− a+ = 0, and set

h1 =
ω′ − a+

ω
.

Next we will show that h1 is a constant.
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To prove this assertion, we first prove h1 is a small function of ω. In fact, (2.2) and (2.3) give
m(r, h1) = S(r, ω).

By considering the order of any pole of ω in (1.2), we can check that there exists no possibility
for such a pole, as shown in [9] and therefore all solutions are entire, and N(2(r,

1
ω
) = S(r, ω),

where N(2(r,
1
ω
) denotes the counting function corresponding to multiple zeros of ω. Thus, N(r, h1) =

S(r, ω), and T (r, h1) = S(r, ω).

Moreover, it follows by the definition of h1 that

ω′ = h1ω + a+, ω′′ = (h′1 + h2
1)ω + h1a+,

which, with (1.2), gives h′1 ≡ 0, and h1 = α
a−
. Thus, ω′−a+ = α

a−
ω, and we have ω(z) = c exp( αz

a−
)−

γ
α
, if α 6= 0 or ω = a+z + c, if α = 0, where c is a constant.

If ω′(z0)− a− = 0, we set

h2 =
ω′ − a−

ω
.

In the same way, we get ω = c exp( αz
a+

)− γ
α
, if α 6= 0 or ω = a−z + c, if α = 0, where c is a constant.

This completes the proof of Theorem 1.1.

Proof of Theorem 1.2.

To prove Theorem 1.2, now we distinguish three cases to discuss.

Case 1. αβ 6= 0. Since γ = 0, it follows by (1.2) that

ωω′′′ − ω′ω′′ = αω′ + βω′′,

this gives
(ω′′ + α)(ω′)2 = ωω′ω′′′ − βω′ω′′. (2.4)

From (1.2) and (2.4), we get
ω[(ω′′)2 − ω′ω′′′ − α2] = αβω′. (2.5)

Note that all the solutions of (1.2) are entire functions, by (2.5), we see that ω ≡ 0 or ω = eh, in which
h is an entire function.

Substituting ω = eh into (2.5), we have

{[(h′)2 + h′′]2 − h′[3h′h′′ + (h′)3 + h′′′]}e2h = α2 + αβh′. (2.6)

By the standard Valiron-Mohon’ko lemma ( see, e.g., [10] ), Lemma 2.2 and (2.6), we obtain h′ = −α
β

and so
ω = ce

−α
β
z
,

where c is a constant.

Case 2. α = 0. In this case, (1.2) gives ωω′′ = ω′(ω′ + β), thus ω = c1, or ω = −βz + c1, or

ω′′

ω′ + β
=
ω′

ω
,

and so
ω = c1e

c2z +
β

c2
,

where c1, c2 are constants.
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Case 3. β = 0. From (1.2), we conclude

[(
ω′

ω
)2]′ = −2α( 1

ω
)′,

this leads to

(
ω′

ω
)2 = −2α

ω
+A, (2.7)

where A is a constant.

Again, by (1.2) and (2.7) we find
ω′′ −Aω + α = 0,

which gives

ω =

{
c1e
√
Az + c2e

−
√
Az − α

A
, A 6= 0;

−α
2
z2 + c1z + c2 , A = 0,

where c1, c2 are constants such that c21 + 2αc2 = 0 if A = 0 or 4c1c2A2 = α2 if A 6= 0.

This completes the proof of Theorem 1.2.
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